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Abstract—Recently, computer vision-aided positioning tech-
niques have emerged as a promising approach to achieve precise
positioning in wireless communications. However, maintaining
a constant view of the user equipment (UE) is a challenging
task due to occlusions. In this paper, we propose a multi-view
positioning technique, referred to as contrastive learning-based
identification and multi-view-based positioning (CLI-MVP), for
multi-user communication systems. To be specific, we detect and
identify UEs in multi-view images and estimate their positions
using the triangulation technique.

I. INTRODUCTION

In recent years, the emergence of 6G communication sys-
tems has spurred the development of various position-based
services (PBSs) such as wireless communications, autonomous
driving, and tactile internet that require accurate position-
ing [1]–[3]. However, since positioning techniques in 5G NR
primarily rely on radio frequency, their positioning perfor-
mance depends heavily on the communication environment
and does not meet the stringent requirements of PBSs.

In this paper, we propose a positioning technique using
multi-view images for multi-user communication systems. The
proposed technique, referred to as contrastive learning-based
identification and multi-view-based positioning (CLI-MVP),
consists of three steps: 1) UE detection, 2) UE identification,
and 3) UE positioning. That is, we first detect UEs using a
deep learning (DL) based object detector. Then, we identify the
same UE across multi-view images based on the similarity of
visual features, which are learned using contrastive learning.
Finally, the positions of the identified UEs are estimated using
triangulation.

II. MULTI-VIEW POSITIONING VIA CONTRASTIVE
LEARNING

In this section, we describe in detail the process of estimat-
ing the positions of UEs using multi-view images.

A. Object Detection

We consider a multi-view vision-aided system consisting
of N cameras, resulting in a set of images I = {If ∈
Rh×w×3}Nf=1, where If is an image from the f -th camera,
w and h are the width and height of an image, respectively.
The position of a UE p̂k can be estimated by analyzing its
projections in the multi-view images. To obtain the projections
of UEs in the f -th image, we employ a DL-based object
detector that finds out K bounding boxes, where bk,f is
a bounding box of k-th object. The bounding box bk,f =

Fig. 1: Illustration of the multi-view positioning system. The
UEs are detected in each image and then paired based on the
visual similarity, and the position of each UE is estimated as
the intersection of light rays.
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B. UE Identification

To identify UE across multi-view images, we pair a bound-
ing box from the f -th camera with a bounding box from the
g-th camera based on their visual features, such as clothes
and body shapes. Specifically, a DL-based network, namely
ResNet, receives an input image Ik,f ∈ RwI

k,f×hI
k,f×3, cropped

from the image If according to the bounding box bk,f , and
extracts visual features ak,f ∈ D, where D is the feature
dimension.

To guide the DL-based network to learn the visual features
of the same UE across multi-view images, we implement con-
trastive learning that identifies the features that are available
in all cameras. Formally, given visual features from the f -th
camera and the g-th camera, we maximize the cosine similarity
if the bounding boxes are from the same UE and minimize
otherwise,

L(bk,f , bj,g) = (1− 2 ∗ 1(k, j)) s(k,f),(j,g), (1)

where 1(k, j) is an indicator function that returns 1 if k and
j are the same UE, and 0 otherwise, and s(k,f)(j,g) is the
similarity measurement of visual features ak,f and aj,g of k-
th UE in f -th view and j-th UE in g-th view, respectively,
using cosine similarity,

s(k,f)(j,g) =
aT
k,faj,g

∥ak,f∥∥aj,g∥
. (2)
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Fig. 2: Detection rate vs. the number of UEs.

To pair bounding boxes from the f -th camera Bf = {bk,f}
with bounding boxes from the g-th camera Bg = {bj,g}, we
find the bipartite matching between bounding boxes with the
lowest matching cost,

σ̂ = argmax
σ∈∆K

K∑
k

(
1− s(k,f)(σ(k),g)

)
, (3)

where α(k) is a mapping function that maps bounding box
indices from the f -th image f to the g-th image. The optimal
assignment can be found using the Hungarian algorithm.

C. UE Positioning

Using the paired bounding boxes from all cameras, we
triangulate the 3D position that results in the centroid pix-
els in each image. We assume the camera position of =
[of,x of,y of,z], the camera rotation Rf ∈ R3×3, the camera
intrinsic parameter matrix Kf ∈ R3×3 and are known. The
light ray that projects the k-th UE onto the f -th camera is
represented as a linear line lk,f = of + tvk,f in 3D space
where vk,f = [xk,f yk,f 1]K−1

f R−1
f is the direction vector.

Using the reconstructed light rays, we estimate the position
of UEs by finding their midpoints, as the rays might not
intersect. We can express the light ray as

(I−Vk,f )(p̂k − of ) = 0, (4)

where I is the identity matrix and Vk,f =
vk,f (v

H
k,fvk,f )

−1vH
k,f is the projection matrix onto the

directional vector vk,f . Collecting (4) from cameras
f = 1, · · · , N , we can construct an overdetermined linear
system with N equations. The system can be expressed
simply as Gp̂k = b, where

G =

 I−Vk,1

...
I−Vk,N

 ,b =

 (I−Vk,1)o1

...
(I−Vk,N )oN

 . (5)

Then, the LS solution of the linear system can be easily
computed as p̂k = (GTG)−1GTb.
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Fig. 3: Distance error vs. the number of UEs.

III. SIMULATION RESULTS

In this section, we examine the performance of the proposed
multi-view positioning technique in terms of detection rate
and positioning error. To train and evaluate the positioning
performance of CLI-MVP, we consider people as UEs and
generate a dataset where UEs are randomly placed in the
7 × 7m area using Unity Game Engine. For comparison, we
consider a single-view positioning technique and a TDoA-
based positioning technique.

In Fig. 2, we illustrate the detection rate of various po-
sitioning methods as a function of the number of UEs.
Firstly, we observe that CLI-MVP achieves 99.3% whereas
the detection rate of the single-view positioning scheme is
88%. The detection rate of the single-view positioning scheme
degrades drastically when the number of UEs increases as one
UE occludes another. Secondly, the detection rate of CLI-MVP
increases with the number of cameras, 99%, and 90% using
three and two cameras, respectively. The TDoA-based method
trivially achieves a 100% detection rate using the transmitted
signals from all UEs.

In Fig. 3, we plot the positioning error of various positioning
schemes as a function of a number of UEs. The TDoA-based
method achieves 40cm with high variance due to the variation
of environment. In contrast, the single-view method utilizing
an RGB-D camera can achieve positioning error at 15 cm
but with a low detection rate. CLI-MVP, however, achieves a
near-perfect detection rate and precise positioning at a 6cm
positioning error. That is, multi-view positioning methods
utilizing two and three cameras achieve positioning errors
of 5.5 and 5.4 cm, respectively. The more precise estimated
positions result in a triple achievable data rate compared to
the TDoA-based scheme.
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