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Abstract—This study proposes principal component analysis
quantum learning (PCA-QL) to reduce the input dimension,
addressing the limited number of qubits in quantum machine
learning. As a particular application, PCA-QL is employed to
optimize beamforming directions from multiple access points
(APs) to multi-user equipment (UEs) in a cell-free multiple-
input-multiple-output (CF-MIMO) scenario. The objective is to
maximize the achievable sum rate given the optimal transmit
beamforming.

Index Terms—Beamforming, cell-free MIMO, principal com-
ponent analysis, quantum machine learning.

I. INTRODUCTION

Cell-free multiple-input multiple-output (CF-MIMO) is a
technology where antennas called access points (APs) are
distributed to serve multi-user equipment (UEs) [1]. In CF-
MIMO, each UE is not served by a dedicated single AP
as in the conventional method. Instead, each UE is served
by multiple APs that are randomly distributed in the service
coverage area. It is worth noting that all the APs are connected
to the central processing unit (CPU) through fronthaul links
[2]. In order to enhance spectral efficiency, each AP has to
accurately transmit the desired signal to the intended UEs.
Consequently, optimally directing the beamforming becomes
an important task. However, designing optimal beamforming
employing conventional methods, i.e., mathematical deriva-
tion, classical machine learning, etc., can be challenging and
computationally complex because of the number of optimized
variables. Therefore, several studies proposed quantum ma-
chine learning based on CF-MIMO [3]. Nevertheless, to the
best of the authors’ knowledge, the utilization of quantum
machine learning for beamforming optimization is still limited.
Additionally, considering the current limited number of qubits
in quantum machine learning, this study proposes principal
component analysis quantum learning (PCA-QL) to reduce
the input dimension. The proposed PCA-QL is employed
to optimize the direction of beamforming in the CF-MIMO
scenario.

II. CELL-FREE MIMO SYSTEM MODEL

This study considers a downlink CF-MIMO system con-
sisting of A APs, where each AP employs NTx antennas to
serve K UEs. In addition, both the APs and the UEs are
arbitrarily distributed throughout the service coverage area.
Moreover, all the APs are connected via fronthaul links to
the CPU. Owing to this connection, the CPU collects the

Figure 1. The proposed PCA-quantum learning for beamforming optimiza-
tion.

channel state information (CSI) from all APs, forming what is
commonly referred to as the global channel matrix. The global
channel matrix that is collected in the CPU can be expressed
as G =

[
g[1], · · · , g[k], · · · , g[K]

]
∈ CK.

The perfect CSI is considered in this study, thus the
channel coefficient between a-th AP and k-th UE can be
expressed as g[a]n,k = 1√

Ppath

∑Ppath
p=1 η

[a]
n,kα(θp), where the ηk,a ∼

CN (0, d
−χ[a]
n,k ) denotes the complex-valued random variable

for Rayleigh fading, following a normal distribution with 0
as the mean and d

−χ[a]
n,k as the variance, where χ denotes

the path loss exponent. In this context, d
[a]
n,k denotes the

distance between the n-th antenna in the a-th AP and the
k-th UE. Additionally, α(θp) denotes the antenna response
vector, which can be expressed as α(θp) =

[
1, · · · , e−j2πθpβ

]
,

where θp ∈ (0, 2π] denotes the spatial direction and β can be
expressed as β =

{
n− 1

2 · (NTx − 1)
}

.
In terms of the processing method, CF-MIMO offers two

schemes: centralized and decentralized. This study focuses
on the centralized scheme, where a precoding matrix is per-
formed in the CPU based on global CSI. In order to serve
multiple UE, the CPU employs the zero-forcing to produce a
precoding matrix. Let Lk be the precoding matrix for each
UE. By employing zero forcing, the precoding matrix can
be obtained by pseudo-inverse the channel matrix G. Thus,
the Lk can be calculated as Lk = G(GHG)−1, where (·)H

denotes the Hermitian operation. Furthermore, according to
[4], the optimized zero forcing vector can be expressed as

Pk =

(
τk+Lk

)
+δk/

∥∥∥(τk+Lk

)
+δk

∥∥∥, where τk and δk denote
the scale and shift factor, respectively. Furthermore, these
optimized factors can be obtained from quantum machine
learning.

It is noteworthy that not all APs can serve the UEs due
to an out-of-range condition, as a result of the distance
between the AP and UE that exceeds the maximum threshold.
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Therefore, the APs that serve the UEs are grouped as As,
where As = {1, · · · , As}. Meanwhile, the APs that do not
serve the UEs are considered as interference and grouped
as Ai, where Ai = {1, · · · , Ai}. The received signal-to-
interference-plus-noise ratio (SINR) then can be expressed as

Υk =
∑

as∈As
ξ
∣∣GT

k,as
P

[as]
k

∣∣2
ξ
∑

ai∈Ai,ai /∈As
bk,ai

∣∣GT
k,ai

P
[ai]

k

∣∣2+1
, where ξ denotes the

transmitted signal-to-noise power ratio which can be calculated
as ξ = OTx/σ2 and bn,ki

∈ (0, 1] denotes the interference
factor. This study assumes that all the APs have a similar
transmit power OTx. The achievable rate for the k-th user can
be expressed as Rsum =

∑K
k=1 log2(1 + Υk).

Problem Formulation As mentioned earlier, the objective
function is to maximize the achievable sum rate given the
precoder matrix which can be formulated as follows:

max
P

Rsum (1a)

s.t. C1 : Rsum ≥ Rmin, (1b)

C2 : ||Pk||2 ≤ 1,∀k ∈ {1, . . . ,K} (1c)

III. PCA-QUANTUM LEARNING FOR BEAMFORMING
OPTIMIZATION

The PCA process for reducing input dimension consists of
several steps that can be specifically described as follows.
Let G ∈ CA×K which is the global channel matrix that
the CPU receives from all APs, be the input training data.
First, to reduce the dimension of G ∈ CA×K, we calculate
the covariance matrix from the centered data of the channel
matrix that can be expressed as Σ = 1/AḠHḠ, where Ḡ
denotes the centered global channel matrix. Second, perform
eigenvalue decomposition to reveal the principal components;
the eigenvalues represent the total number of variance cap-
tured by each component, while the eigenvectors define their
directions. Third, by sorting the eigenvalues and eigenvectors
in descending order, highlight the principal components that
capture the most significant patterns in the data. Thus, the
projection matrix M can be expressed by selecting the top
k eigenvectors as columns, and the matrix is written as
M = [λ1, · · · , λk]. Finally, the reduced input training data
can be expressed as Ĝ = Ḡ×M.

Subsequently, the Ĝ = [ĝ1, · · · , gk] become inputs of
the quantum machine learning. Herein, the number of the
inputs is equal to the number of qubits Q. where each
qubit is placed into the superposition state employing the
Hadamard operator, denoted by H, which can be ex-
pressed as U(sup) ≜

⊗Qqubit
q=1 H(|gq⟩). Thereafter, feedfor-

ward training process of quantum machine learning de-
noted by UPCA-QL, can be expressed as follows UPCA-QL ≜(⊗Jlayer

j=1

⊗Qqubit
q=1 RY

(
π
[j]
q

)(∏Jlayer
j=1

∏Qqubit
q=1 CX

(
q
[j]
q |q[j]q−1

)
⊗. . .⊗

CX
(
q
[j]
Qqubit

|q[j]Qqubit−1

))
RX

(
ĝ
[j]
q

))
, where the Nqubit denotes the

number of required qubits. In the last layer, the quantum mea-
surement is performed to obtain the classical values that can
be expressed as MPCA-QL = ⟨0| UPCA-QL(ϑ)

†HUPCA-QL(ϑ) |0⟩,
where in order to mitigate the noise in the quantum com-
puting, the measurement is repeated Sshot times. Finally, the
classical values as the outputs from quantum machine learning

can be expressed as Udecode = 1
Sshot

∑Sshot
s=1 M

[s]
PCA-QL. The

loss is computed on the classical computer, as the PCA-
QL employs unsupervised learning then the loss function can
be expressed as L = −Rsum. Subsequently, based on the
loss, the gradient can be calculated by employing parameter-
shift rules [5] which can be expressed as ∇LPCA-QL(ϑ) =
LPCA-QL(ϑ+ϵ)−LPCA-QL(ϑ−ϵ)

2 sin(ϵ) , where the shifting phase is denoted
by ϵ ∈ [0, π]. At the last, parameter update can be expressed
as ω∗ = ω − α∇LPCA-QL(ϑ), where α denotes the learning
rate.

IV. CONCLUSION

In this study, a principal component analysis quantum learn-
ing (PCA-QL) was proposed to reduce the input dimension
to address the issue of the current limited number of qubits
in quantum machine learning. As a particular application, the
PCA-QL was employed to optimize the beamforming direction
to obtain the maximum achievable sum rate in a cell-free
MIMO scenario.
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