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Abstract—In recent times, there has been a notable increase
in interest in on-device object detection. This technology allows
for real-time processing of visual data without relying on a
connection to a distant server. Additionally, it opens up several
possibilities for application in other fields. Deploying these models
on edge devices, particularly custom-made ones, presents several
obstacles, mostly due to the limited processing power, memory,
and storage capacity of edge devices, which are insufficient for
AI training that demands significant computational power and
storage. In addition, the development of ARM-based devices
requires tailored model training and implementation that is
specifically designed for the edge device. This article presents the
implementation of an object detection model using a TensorFlow
Lite model with a 94% accuracy. The model is designed to operate
in real time on a custom-built edge device, making this work
novel. Furthermore, it yields favorable outcomes in comparison
to its stated criteria.

Index Terms—Custom Built Edge Device, Object Detection,
TensorFlow Lite.

I. INTRODUCTION

Object detection is a crucial domain within computer vision.
It finds applications in several domains, such as autonomous
vehicles, cybersecurity, and robotics. It aids in the detection
and recognition of objects in photos or movies. An essential
aspect of object detection is the capability to do it locally on
the device without requiring an internet connection. On-device
object detection enables immediate processing and eliminates
the delays and privacy concerns associated with transmitting
data over the Internet.

We use TensorFlow for the purposes of machine learning
and deep learning [1], but it necessitates a substantial amount
of computational power and resources. TensorFlow Lite is par-
ticularly well-suited for deployment on edge devices. Tensor-
Flow Lite is a costless deep-learning framework that enables
developers to construct and use machine-learning models on
edge devices [2]. Its architecture prioritizes compactness and
speed, making it highly suitable for on-device activities such
as object identification. To transform a TensorFlow model into
a TensorFlow Lite model, one might use the TensorFlow Lite
Converter. The TensorFlow Lite converter utilizes optimiza-
tions and quantization methods to minimize the dimensions
and delay of the model. This assignment is completed with
little to insignificant effect on detection or model accuracy. The
TensorFlow Lite converter generates an optimized FlatBuffer
format, indicated by the .tflite file extension, by using the
original Tensorflow model. The TensorFlow Lite Converter
landing page offers a Python API for the conversion of models
(TensorFlow Lite) . This paper’s contributions are as follows:

1) This study has successfully deployed an object detec-
tion model on a bespoke ARM-based device using the
TensorFlow Lite model, which is a novel work.

2) This research provides a comprehensive performance
analysis and demonstrates that the findings of this article
are superior to those of any other current article.

The subsequent portion of the report delineates the method-
ologies used to construct and authenticate the suggested model.
The outcomes of the suggested experiments are reported in
Section III. These findings, together with the technique used,
have successfully contributed to achieving the aim. Section IV
discusses potential improvements alongside the conclusion.
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Fig. 1. Proposed Methodology for Detecting an Object using the Edge Device
II. PROPOSED METHODOLOGY

This article utilizes a specially constructed edge device. The
architecture of the device is based on AArch64 and supports
both 32-bit and 64-bit CPU modes. There are a total of 6
CPUs. The system has a configuration of one thread allocated
per core, with a total of three cores assigned per socket. It
has two sockets. The gadget in question is based on the ARM
architecture and utilizes the Cortex-A53 processor. The CPU
has a maximum clock speed of 2208 MHz and a minimum
clock speed of 500 MHz. The product has a single USB-
C connector for power, an HDMI port for connecting to a
display, three USB ports, and one Ethernet port for internet
connectivity. Additionally, this gadget is equipped with a Wi-
Fi adapter, allowing us to use wireless internet connectivity.

We use the USB burning program to transfer the vim3-
ubuntu-20.04-gnome-linux-4.9-fenix-1.3-221118-emmc oper-
ating system, which is a variation of Ubuntu developed by
Khadas, to our device. The first step involves establishing
a connection between the edge device and the host PC by
using an A-type port and a C-type port. Once the operating
system has been successfully installed on the device, we
proceed to detach the power cord and operate the gadget using
an adapter. It will start the Ubuntu operating system. Upon
starting Ubuntu, it is necessary to acquire some libraries in
order to execute the TensorFlow lite model on the edge device.
The suggested technique is presented in a straightforward
manner in reference 2.

https://viso.ai/edge-ai/tensorflow-lite/#:~:text=The%20TensorFlow%20Lite%20converter%20applies,FlatBuffer%20format%20identified%20by%20the%20


TABLE I
RESULT COMPARISON OF THE PROPOSED AND EXISTING MODELS

Researches Accuracy Average FPS Latency (ms) Detected object Edge Device
[2] N/A N/A N/A Any Objects N/A
[3] N/A N/A N/A Only Dog Raspberry Pi 4
[4] 91.76 N/A 358.95 (inference time) Cardboard, Paper, Metal, Plastic, Glass Arduino
[5] N/A 4.5 N/A Object detection for blind people Raspberry Pi 4
This article’s 94.17% 15 37 Any Objects Custom Build Device

Fig. 2. The edge device is perceiving the items inside its field of vision

III. EXPERIMENT AND PERFORMANCE ANALYSIS

This article employs Google’s edge device’s Convolutional
Neural Network (CNN) model to validate the compatibility of
the TensorFlow Lite (tf-lite) model with the device. This model
has undergone training using the COCO dataset. We used the
efficientdet-lite0 model, which has a default configuration of
50 epochs and a batch size of 64. It has a single step per
execution. Although the option to use TPU is available, it is
not currently being used. Additionally, the default verbosity
level is set to 0. After performing the upgrade and update
command on Ubuntu, we proceeded to clone one of the official
Google scripts and then made unique modifications to it. In
order to do this, we replicated the code from the tensorflow
lite examples. Subsequently, we installed python3 to execute
or modify the code as needed. In order to execute our code, it
is important to set up a virtual environment (venv) to isolate it
from the root libraries and ensure that all the required libraries
are included inside it.

Upon the completion of the venv installation, it is necessary
to activate the venv. By using the command ”sh setup.sh”,
one may activate their virtual environment (venv). Next, go
to the downloaded file by using the ”cd” command. Then,
execute the sh file by using the ”sh setup.sh” command. There
is a single defect in the code. One may resolve this issue
by using a file with a lower version. In order to do this, we
will use the following command: ”python -m pip install –
upgrade tflite-support==0.4.3”. Next, we will proceed with the
installation of the guvcview program specifically designed for
the camera. Next, we will execute the detect.py script using our

chosen model, which, in the context of this post, is ”–model
efficientdet lite0.tflite”. The camera will now automatically
open and begin detecting the objects. Upon analyzing the
results, it is evident that the work presented in this paper is
very noteworthy and surpasses that of others. The accuracy
of the system is 94.17%, with an average frame per second
(FPS) of 15. Additionally, the latency of the system is just 37
milliseconds.

IV. CONCLUSION

This work used tensorflow lite to identify objects in a real-
time scenario on a specifically constructed edge device. It
attains a 94% level of accuracy while maintaining a minimal
latency and delivering satisfactory frames per second (FPS).
Our future endeavors will focus on enhancing precision by
optimizing the frames per second (FPS) and integrating it into
a practical scenario, such as a factory execution system.
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