해상 환경에서 VDE-TER 성상도 평가에 관한 연구

정의석, 김동완*

동아대학교,

wjddmltjr16@gmail.com, *dongwankim@dau.ac.kr

A study about constellation performance evaluation of VDE-TER in maritime environment

Uiseok Jeong, Dongwan Kim*

Dong-A Univ.

요 약

본 논문에서는 VDES (VHF Data Exchange System) 주요 구성 요소 중 VDE-TER (Terrestrial) 물리 계층 구성 에 대해 분석하고, MATLAB 기반 해상 환경에 대해 모델링 및 모듈레이션에 대한 성능 평가를 수행하였다.

I. 서 론

국제해사기구 (International Maritime Organization, IMO) 에서 제시하 는 기술 중 하나인 e - Navigation 항법 체계는 안전하고 효율적인 선박 운용에 있어 중요한 요소로 작용하고 있다. 최근 선박 수의 증가에 따라 기존에 운용되었던 AIS (Automatic Identification System) 및 ASM (Application Specific Message)에 VDE (VHF Data Exchange) link를 추가한 VDES (VDE Systme)가 도입되었다. [1] VDE link 프레임 구조 의 경우 기존 AIS 및 ASM에서 따르고 있던 HDLC (High-level Data-Link Control) 구조로 형성돼있다. 또한, VDES는 VDE-TER (Terrestrial)과 VDE-SAT (Satellite)로 구성되며, 각 구성에 따라 물리 계층 프레임 구조 차이를 가진다.[2] 본 논문에서는 VDE link 중 VDE-TER 프레임 구조의 물리 계층에 대해 분석하고, 사용하는 모듈레 이션 기법을 해상 환경에서 성능 평가를 수행한다.

Ⅱ. 본론

VDES는 156.025 ~ 162.025 MHz VHF 해상 대역에서 기존의 AIS와 ASM에 이어 추가된 VDE link로 구성된 시스템이다. 그림 1은 VDES의 VDE link의 채널 분포이다. VDE-TER 은 1024, 1025, 1084, 1085 채널을 사용하며 선박과 선박, 선박과 기지국 간의 통신에 할당된다. VDE-SAT 는 VDE-TER 채널에서 1026, 1086, 2026, 2086 채널을 추가로 사용하며 선박과 위성 간의 통신에 할당된다. 그림 1에서는 VDE link에서 사용하는 주파수 대역에 대해 나타내었다.

VDE – uplink					VDE - downlink							
1024 ch. 157.200 MHz	1084 ch. 157.225 MHz	1025 ch. 157.250 MHz	1085 ch. 157.275 MHz	1026 ch. 157.300 MHz	1086 ch. 157.325 MHz	interval 4.45 MHz	2024 ch. 161.800 MHz	2084 ch. 161.825 MHz	2025 ch. 161.850 MHz	2085 ch. 161.875 MHz	2026 ch. 161.900 MHz	2086 ch. 161.925 MHz
VDE-TER						VDE-TER						
VDE-SAT					VDE-SAT							

그림 1. VDE link의 주파수 대역에 따른 채널 분포

VDE-TER 패킷은 M.2092-1의 권장 사항에 따라 그림 2와 같이 구성되 며 2,250개의 슬롯이 모여 하나의 프레임을 형성한다. [1] 해당 구조는 HDLC 구조와 유사하며 패킷의 총 길이는 Link ID 값에 따라 심볼 단위 로 표현된다. VDES는 채널의 전파 상태에 따라 모듈레이션 기법 및 코딩 기법을 변화시키는 기술인 AMC (Adaptive Modulation and Coding) 기 술이 적용된다. 이는 각 모듈레이션 방식마다 데이터 전송 속도와 구성되 는 비트 수가 다르게 표현되므로 슬롯의 표현에 있어 비트 단위가 아닌 심볼 단위로 표현한다.

Ramp-up	Syncword	Link ID	Data	Ramp- down	Guard time
8 / 16 / 32	27	16	437 / 917 / 1877	8 / 16 / 32	16
symbols	symbols	symbols	Symbols	symbols	symbols

그림 2. VDE-TER 슬롯 구조

본 논문에서는 VDE-TER 의 성상도를 나타내기 위해 π/4-QPSK 모듈 레이션에 대한 알고리즘을 구성하였다. 신호의 RF 전력의 증감에 해당하 는 Ramp-up 및 Ramp-down과 통신 시간 지연에 해당하는 Guard time 은 고정된 시간이 할당되어 있으며 모듈레이션 방식에 따라 심볼 수가 변 화한다. 그러나 Syncword 와 Link ID의 경우 슬롯 전체의 모듈레이션 방 식에 얽매이지 않고 π/4-QPSK 모듈레이션이 고정적으로 적용된다. 특 히 Syncword 의 경우 기존 π/4-QPSK 방식과 달리 0은 (0 0), 1은 (1 1) 2가지 형태로만 매핑 된다. [1] 그림 3은 π/4-QPSK 의 비트 매핑 방식을 나타낸 것이며 첫 번째 비트는 심볼의 MSB, 두 번째 비트는 심볼의 다음 비트 순으로 반복되며 LSB 까지 매핑 된다. π/4-QPSK 방식에서 MSB 는 복소수의 실수값에 해당하며 LSB는 허수값에 해당한다. 이후 슬롯을 구성하는 심볼 좌측부터 차례대로 시작하여 짝수 번째는 성상도의 청색 표시에 흘수 번째는 성상도의 적색 표시에 최종적으로 매핑 되어 나타난 다.

그림 3. π/4-QPSK의 비트 매핑 방식

해상 환경에서의 모듈레이션 동작을 확인하기 위해 해상 통신 환경의 특 성을 알아야 한다. 첫 번째, 해상은 육상보다 장애물이 거의 존재하지 않 는다. 두 번째, 육상보다 전자기파의 산란을 일으킬 산란체가 희박하다. 세 번째, 육상과 달리 파도로 인해 통신 대상의 위치가 변화한다. 네 번째, 해 수 표면의 증발로 인한 굴절률의 변화를 고려해야 한다. 따라서 본 논문에 서는 해상 환경의 특성을 고려한 경로손실 모델 중 하나인 2-ray 모델과 3-ray 모델을 사용하였다. [3],[4] 2-ray 모델은 신호의 해수면 반사로 인 한 굴절을 포함한 지표이다. 3-ray 모델은 해수면 반사로 인한 굴절과 해 수 증발로 인한 굴절을 포함한 지표이다. 표 1에 측정 환경에 대한 매개변 수를 나타내었으며 그림 4는 두 환경에서 통신 거리에 따라 측정된 손실 값이다.

표 1. 경로손실 측정 매개변수 값

매개변수	값
캐리어 주파수	160 MHz
송신 안테나 높이	100 m
수신 안테나 높이	11m
증발 덕트 높이	12m
송수신기 사이 거리	1 ~ 3000 m

그림 4. 2-ray 및 3-ray 경로손실 모델

그림 5와 6은 제시된 두 경로손실 모델의 시뮬레이션 결과이다. 그림 5 는 채널 품질이 양호한 경우의 성상도를 나타냈으며, 그림 6은 채널의 품질이 경로손실로 인해 불량한 경우의 성상도를 나타내었다.

그림 5. 채널 환경이 양호한 경우에 대한 VDE-TER 성상도

그림 6. 채널 환경이 불량한 경우에 대한 VDE-TER 성상도

Ⅲ. 결론

본 논문에서는 해상 환경에서의 경로손실로 인한 성상도의 변화를 살펴 봤다. 그러나 해당 시뮬레이션은 채널의 품질에 대해서만 다루어진 실험 으로 추후 연구에서는 품질이 급격하게 나빠지는 구간에 대한 정보 추출 과 해당 구역에서의 신호 오류 비율을 측정하는 연구가 필요하다.

ACKNOWLEDGMENT

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단 의 지원을 받아 수행된 연구임 (NRF-2021R1F1A1062443)

참 고 문 헌

- ITU (2022). Technical characteristics for a VHF data exchange system in the VHF maritime mobile bandwidth. ITU-R, M.2092-1.
- [2] ITU (2014). Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile frequency band. ITU-R, M.1371–5.
- [3] W. Xu, H. Zhou, T. Yang, H. Wu and S. Guo, "Proactive Link Adaptation for Marine Internet of Things in TV White Space," ICC 2020 – 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020, pp. 1–6, doi: 10.1109/ICC40277.2020.9148978.
- [4] J. Wang, H. Zhou, Y. Li, Q. Sun, Y. Wu, S. Jin, T. Q. Quek, and C. Xu, "Wireless channel models for maritime communications," IEEE Access, vol. 6, pp. 68 070 - 68 088, 2018.