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Abstract 

This paper presents an approach to enhance the generalization capability of MADDPG algorithm-based resource allocation 

scheme, leveraging parameter sharing through a single agent with a shared actor-critic pair. Our approach focuses on 

improving the algorithm's adaptability to unforeseen scenarios, especially variations in the number of users encountered 

post-training.  The results demonstrate that the pre-trained model serves as a robust foundation, facilitating rapid adaptation 

to the dynamic nature of the system, and ensuring efficient performance even for users joining the environment after the 

initial training phase. 

I. Introduction 

In our earlier work [1], we delved into a joint communication 

and computing resource allocation (JCCRA) in a cell-free massive 

MIMO-enabled mobile edge computing (MEC) system, with the 

primary objective of minimizing the total energy consumption 

while meeting stringent user delay requirements. To tackle the 

problem, we presented a distributed JCCRA scheme based on a 

cooperative multi-agent reinforcement learning (MARL), 

specifically leveraging the multi-agent deep deterministic policy 

gradient (MADDPG) algorithm [2] under the framework of 

centralized training and decentralized execution (CTDE). Thus, 

each user is treated as a deep reinforcement learning (DRL) agent, 

equipped with its own actor network for learning an individual 

policy, while a dedicated critic network provides individualized 

expected return taking into account the joint actions and states of 

all agents in the system. Consequently, the algorithm becomes 

specialized to the specific conditions and dynamics present in the 

training environment, failing to generalize well to cases when the 

number of users in the system undergoes changes, such as arrivals 

and departures.  

In this work, to improve generalization of the algorithm, while 

speeding up the learning process, we implement a single agent, 

which entails a utilization of a shared actor and critic pair among 

the agents. This shared agent undergoes training using experiences 

sampled from the interactions of all agents, stored collectively in a 

replay buffer. By consolidating the knowledge gained from the 

diverse experiences of all agents, we seek to create a more robust 

and adaptable framework that can efficiently handle changes in the 

number of users within the system. 

II. System Model and Problem Formulation 

At the beginning of each discrete time step t, each user 

generates a computationally intensive task with  kQ t bits to be 

processed within the application deadline, denoted by  d

kt . Let 

max

kf represent the maximum local processing speed of the k-th 

user, while cpbN corresponds to the number of cycles required to 

process a one-bit task. Furthermore, Let      local

k k kQ t t Q t for 

 0,1k  denote the proportion of locally computed task size, 

implying the task bits to be offloaded is given by 

     offload local

k k kQ t Q t Q t  . Then, the time consumed for local 

execution can be expressed as  
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while the corresponding energy consumption is given by 
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maxlocal local

k k cpb kE t Q t N f , where   is the effective 

switched capacitance constant. 

The remaining task bits, i.e.,  offload

kQ t  are offloaded to the 

edge server for parallel execution. Let the processing capacity of 

the edge server be denoted by Ef , which is to be proportionally 

shared among the users based on the offloaded task sizes. Denoting 

the allocated computation resource for the k-th user by  E

kf t  , 

then the total delay for edge computation  E

kt t can be given as a 

sum of computing delay   
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 . Moreover, the energy 

consumption of the k-th user for edge computing is given as 

     E tr

k k kE t p t t t , where     max

k k kp t t p  is the transmit 

power, which is determined by power control factor  0,1k  , 

denoting the maximum uplink transmit power of the k-th user by 
max

kp . 

Consequently, the overall delay to process  kQ t bits locally 

and at the edge server can be expressed as 

      max ,local offload

k k kt t t t t t . Similarly, the corresponding 

energy consumption is given as      local offload

k k kE t E t E t  . Thus, 

the objective of JCCRA problem is to optimize the allocation of 

local processor speed and uplink transmit power for each user to 

minimize the total energy consumption,  
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 , subject to 

meeting the delay requirements, i.e.,    d

k kt t t t , at each time 

step t. 

 

III. Proposed Approach 

Each user is modeled as a DRL agent and trained according to 

MADDPG algorithm, but implemented as a single agent wherein a 

shared actor and critic pair is utilized among all agents. , denoted 

by the parameters 
   and, Q   respectively, along with the 

respective copies which serve as targets. This parameter sharing 
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mechanism ensures that the actor and critic networks of individual 

agents share the same set of parameters. 

We recall the three key elements of the DRL formulation from 

[1]. More specifically, the local observation of agent k at time step 

t is defined as    ( ), , ( 1)d

k k k ko t Q t t R t  , where ( 1)kR t  is the 

uplink rate of user k from previous time step ( 1)t  . Given the 

local observation  ko t , the agent determines the JCCRA decision 

variables       ,k k ka t t t   , which govern the proportion of 

task size to be computed locally and at the edge, and uplink 

transmit power allocations. To enforce a cooperation among the 

agents, each agent receives a common reward signal
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  , where 1k   if the delay constraint of the k-

user is fulfilled, i.e.,   d

k kt t t   otherwise 10k   to punish the 

agent for a failure in meeting the constraint. The transition of all 

agents        , , , ,k k k ko t a t r t o t k   is stored in the replay buffer.  

The shared agent undergoes training using experiences 

sampled from the interactions of all agents, collectively stored in a 

replay buffer. This design choice not only aims to promote better 

generalization across varying scenarios but also to streamline the 

learning trajectory by consolidating knowledge gained from the 

diverse experiences of all agents. By employing parameter sharing 

and leveraging insights from collective experiences, our approach 

establishes a more robust and adaptable framework capable of 

efficiently handling changes in the number of users within the 

system. Accordingly, when a user enters the system, it has the 

capability to download the pre-trained shared model, enabling it to 

perform effectively without incurring significant performance loss. 

 

IV. Simulation Results 

We consider a cell-free MEC system with 49M  APs which 

are uniformly distributed on an area of 1km2. Furthermore, we 

consider a varying number of users (K) in the system, however 

fixed to 10K   during training. The large scale channel gain is 

given as 1030.5 36.7log ( )mk mk mkd F      , where mkd  is the 

distance between the k-th user and m-th AP, while  

(0,16)mkF   corresponds to a shadow fading.  The system 

bandwidth is set to 10MHz. Furthermore, the size of the 

computational task at each user is assumed to be uniformly 

distributed in the range of [3, 7] Mbps. Other simulation 

parameters are set as follows:   1d d

k kt t t t    ms , 500cpbN  , 

1kf  GHz  , 100E

kf  GHz  . Unless stated otherwise, other 

simulation parameters are consistent with the one in [1]. 

The shared actor and critic pair is implemented as a fully 

connected networks, with a single hidden layer of 512 neurons. The 

respective hidden layers are activated using ReLU function, while 

the output of the actor network is activated using sigmoid. The 

learning rate of the actor is set to 0.0001, while the critic learning 

rate is fixed to 0.001. Further, the target update parameter is set to 

0.001  . 

 
Fig. 1: Performance of the algorithm’s generalization for varying 

number of users in the system 
 
In Fig. 1, we illustrate the average success rate, i.e., 

successfully meeting the delay constraints, of the proposed 

algorithm trained at 10K   as the baseline. Subsequently, the 

algorithm's performance is assessed for various user scenarios, 

specifically K = 10, 15, and 20. To provide a comprehensive 

comparison, we introduce a shared actor trained at 15K   and  

20K  . As depicted in Fig. 1, the proposed algorithm has scaled 

well and effectively adapts to unseen number of users at the 

baseline, closely aligning its performance with individually trained 

models for 15K  and 20K  .  

 
  

V. Conclusions  

We enhanced the vanilla MADDPG algorithm by introducing 

consolidated parameter sharing through a single agent with a 

shared actor-critic pair, aiming to improve the algorithm's 

generalization capabilities, allowing it to adapt seamlessly to 

unforeseen scenarios during training, especially in the presence of 

a varying number of users. 

Acknowledgment 

This work was supported by the National Research Foundation 

of Korea (NRF) grant funded by the Korea government (MSIT) 

(No.2020R1A2C100998413). 

References 

[1] F. D. Tilahun, A. T. Abebe and C. G. Kang, "Multi-Agent 

Reinforcement Learning for Distributed Resource Allocation in Cell-

Free Massive MIMO-enabled Mobile Edge Computing Network," 
in IEEE Transactions on Vehicular Technology, June 2023. 

[2] R. Lowe et al., “Multi-Agent Actor-Critic for Mixed Cooperative-

Competitive Environments”, arXiv preprint arXiv: 1706.02275, 2020. 


