
MADDPG with Parameter Sharing for Robust Resource Allocation

Fitsum Debebe Tilahun, and Chung G. Kang

School of Electrical Engineering, Korea University

{fitsum_debebe, and ccgkang} @korea.ac.kr

Abstract

This paper presents an approach to enhance the generalization capability of MADDPG algorithm-based resource allocation

scheme, leveraging parameter sharing through a single agent with a shared actor-critic pair. Our approach focuses on

improving the algorithm's adaptability to unforeseen scenarios, especially variations in the number of users encountered

post-training. The results demonstrate that the pre-trained model serves as a robust foundation, facilitating rapid adaptation

to the dynamic nature of the system, and ensuring efficient performance even for users joining the environment after the

initial training phase.

I. Introduction

In our earlier work [1], we delved into a joint communication

and computing resource allocation (JCCRA) in a cell-free massive

MIMO-enabled mobile edge computing (MEC) system, with the

primary objective of minimizing the total energy consumption

while meeting stringent user delay requirements. To tackle the

problem, we presented a distributed JCCRA scheme based on a

cooperative multi-agent reinforcement learning (MARL),

specifically leveraging the multi-agent deep deterministic policy

gradient (MADDPG) algorithm [2] under the framework of

centralized training and decentralized execution (CTDE). Thus,

each user is treated as a deep reinforcement learning (DRL) agent,

equipped with its own actor network for learning an individual

policy, while a dedicated critic network provides individualized

expected return taking into account the joint actions and states of

all agents in the system. Consequently, the algorithm becomes

specialized to the specific conditions and dynamics present in the

training environment, failing to generalize well to cases when the

number of users in the system undergoes changes, such as arrivals

and departures.

In this work, to improve generalization of the algorithm, while

speeding up the learning process, we implement a single agent,

which entails a utilization of a shared actor and critic pair among

the agents. This shared agent undergoes training using experiences

sampled from the interactions of all agents, stored collectively in a

replay buffer. By consolidating the knowledge gained from the

diverse experiences of all agents, we seek to create a more robust

and adaptable framework that can efficiently handle changes in the

number of users within the system.

II. System Model and Problem Formulation

At the beginning of each discrete time step t, each user

generates a computationally intensive task with kQ t bits to be

processed within the application deadline, denoted by d

kt . Let

max

kf represent the maximum local processing speed of the k-th

user, while cpbN corresponds to the number of cycles required to

process a one-bit task. Furthermore, Let local

k k kQ t t Q t for

 0,1k denote the proportion of locally computed task size,

implying the task bits to be offloaded is given by

 offload local

k k kQ t Q t Q t . Then, the time consumed for local

execution can be expressed as

max

min ,

local

k cpblocal d

k k

k

Q t N
t t t

f

,

while the corresponding energy consumption is given by

2

maxlocal local

k k cpb kE t Q t N f , where is the effective

switched capacitance constant.

The remaining task bits, i.e., offload

kQ t are offloaded to the

edge server for parallel execution. Let the processing capacity of

the edge server be denoted by Ef , which is to be proportionally

shared among the users based on the offloaded task sizes. Denoting

the allocated computation resource for the k-th user by E

kf t ,

then the total delay for edge computation E

kt t can be given as a

sum of computing delay

offload

k cpbcomp

k E

k

Q t N
t t

f t
 , and

transmission delay

()

offload

ktr

k

k

Q t
t t

R t
 . Moreover, the energy

consumption of the k-th user for edge computing is given as

 E tr

k k kE t p t t t , where max

k k kp t t p is the transmit

power, which is determined by power control factor 0,1k ,

denoting the maximum uplink transmit power of the k-th user by
max

kp .

Consequently, the overall delay to process kQ t bits locally

and at the edge server can be expressed as

 max ,local offload

k k kt t t t t t . Similarly, the corresponding

energy consumption is given as local offload

k k kE t E t E t . Thus,

the objective of JCCRA problem is to optimize the allocation of

local processor speed and uplink transmit power for each user to

minimize the total energy consumption,
1

K

k

k

E t

 , subject to

meeting the delay requirements, i.e., d

k kt t t t , at each time

step t.

III. Proposed Approach

Each user is modeled as a DRL agent and trained according to

MADDPG algorithm, but implemented as a single agent wherein a

shared actor and critic pair is utilized among all agents. , denoted

by the parameters
 and, Q respectively, along with the

respective copies which serve as targets. This parameter sharing

mailto:ccgkang%7d@korea.ac.kr

mechanism ensures that the actor and critic networks of individual

agents share the same set of parameters.

We recall the three key elements of the DRL formulation from

[1]. More specifically, the local observation of agent k at time step

t is defined as (), , (1)d

k k k ko t Q t t R t , where (1)kR t is the

uplink rate of user k from previous time step (1)t . Given the

local observation ko t , the agent determines the JCCRA decision

variables ,k k ka t t t , which govern the proportion of

task size to be computed locally and at the edge, and uplink

transmit power allocations. To enforce a cooperation among the

agents, each agent receives a common reward signal

1

K

k k k

k

r t E t

 , where 1k if the delay constraint of the k-

user is fulfilled, i.e., d

k kt t t otherwise 10k to punish the

agent for a failure in meeting the constraint. The transition of all

agents , , , ,k k k ko t a t r t o t k is stored in the replay buffer.

The shared agent undergoes training using experiences

sampled from the interactions of all agents, collectively stored in a

replay buffer. This design choice not only aims to promote better

generalization across varying scenarios but also to streamline the

learning trajectory by consolidating knowledge gained from the

diverse experiences of all agents. By employing parameter sharing

and leveraging insights from collective experiences, our approach

establishes a more robust and adaptable framework capable of

efficiently handling changes in the number of users within the

system. Accordingly, when a user enters the system, it has the

capability to download the pre-trained shared model, enabling it to

perform effectively without incurring significant performance loss.

IV. Simulation Results

We consider a cell-free MEC system with 49M APs which

are uniformly distributed on an area of 1km2. Furthermore, we

consider a varying number of users (K) in the system, however

fixed to 10K during training. The large scale channel gain is

given as 1030.5 36.7log ()mk mk mkd F , where mkd is the

distance between the k-th user and m-th AP, while

(0,16)mkF corresponds to a shadow fading. The system

bandwidth is set to 10MHz. Furthermore, the size of the

computational task at each user is assumed to be uniformly

distributed in the range of [3, 7] Mbps. Other simulation

parameters are set as follows: 1d d

k kt t t t ms , 500cpbN ,

1kf GHz , 100E

kf GHz . Unless stated otherwise, other

simulation parameters are consistent with the one in [1].

The shared actor and critic pair is implemented as a fully

connected networks, with a single hidden layer of 512 neurons. The

respective hidden layers are activated using ReLU function, while

the output of the actor network is activated using sigmoid. The

learning rate of the actor is set to 0.0001, while the critic learning

rate is fixed to 0.001. Further, the target update parameter is set to

0.001 .

Fig. 1: Performance of the algorithm’s generalization for varying

number of users in the system

In Fig. 1, we illustrate the average success rate, i.e.,

successfully meeting the delay constraints, of the proposed

algorithm trained at 10K as the baseline. Subsequently, the

algorithm's performance is assessed for various user scenarios,

specifically K = 10, 15, and 20. To provide a comprehensive

comparison, we introduce a shared actor trained at 15K and

20K . As depicted in Fig. 1, the proposed algorithm has scaled

well and effectively adapts to unseen number of users at the

baseline, closely aligning its performance with individually trained

models for 15K and 20K .

V. Conclusions

We enhanced the vanilla MADDPG algorithm by introducing

consolidated parameter sharing through a single agent with a

shared actor-critic pair, aiming to improve the algorithm's

generalization capabilities, allowing it to adapt seamlessly to

unforeseen scenarios during training, especially in the presence of

a varying number of users.

Acknowledgment

This work was supported by the National Research Foundation

of Korea (NRF) grant funded by the Korea government (MSIT)

(No.2020R1A2C100998413).

References

[1] F. D. Tilahun, A. T. Abebe and C. G. Kang, "Multi-Agent

Reinforcement Learning for Distributed Resource Allocation in Cell-

Free Massive MIMO-enabled Mobile Edge Computing Network,"
in IEEE Transactions on Vehicular Technology, June 2023.

[2] R. Lowe et al., “Multi-Agent Actor-Critic for Mixed Cooperative-

Competitive Environments”, arXiv preprint arXiv: 1706.02275, 2020.

