

Performance Analysis of Kubernetes-based Data Distribution Service

Eojin Kim*, Yongseong Kim*, Young Choi*, Byungkwon Song*, Hyery Shin**, DeukWoo

Kim**

*Seokyeong Univ., **Korea Institute of Civil Engineering and Building Technology

eojin1030@skuniv.ac.kr, wiz@skuniv.ac.kr, cy@skuniv.ac.kr, bksong@skuniv.ac.kr,

hyeryshin@kict.re.kr, deukwookim@kict.re.kr

Kubernetes 기반 Data Distribution Service 성능 분석

김어진*, 김용성*, 최영*, 송병권*, 신혜리**, 김덕우**

*서경대학교, **한국건설기술연구원

Abstract

Given the increasing interest in utilizing container virtualization for IoT application deployment and management,

this study aims to optimize DDS application architecture within a Kubernetes framework. To achieve this goal, this

study evaluated the performance by implementing containerized versions of OpenDDS, an open-source DDS solution,

and RTI Connext DDS, another DDS implementation. Furthermore, this study evaluated the performance of the

conventional Kubernetes container network interface plug-in, Kube-Router, and Flannel. The results of this study

serve as a benchmark to help users build the optimal CNI environment for DDS application execution within the

Kubernetes framework and select the optimal DDS solution.

Ⅰ. Introduction

Cloud computing and virtualization technologies are

indispensable components of contemporary

information technology (IT) infrastructure. Notably,

container-based virtualization and orchestration

platforms, such as Kubernetes, are instrumental in

driving these advancements [1]. In addition, data

distribution and real-time data exchange are a

fundamental requirement in numerous industries and

technological domains. Data distribution services

(DDS) are acknowledged as a crucial standard

technology for ensuring reliable data communication

[2]. In the context of this framework, the current

study focuses on implementing DDS applications

within a cloud-based infrastructure. Additionally, we

conducted a comprehensive performance analysis of

various DDS implementations, notably, OpenDDS and

RTI DDS. Specific performance metrics, such as

throughput and latency, were employed to assess the

effectiveness of these implementations under the

designated scenarios. Moreover, we investigated and

compared the performances of various container

network interface (CNI) plug-ins.

Ⅱ. Method

A. Backgrounds on underlying technologies

DDS is a standard communication protocol and

application programming interface (API) that has been

defined by the Object Management Group (OMG). It

employs a publisher–subscriber model for data

exchange among disparate systems. Within this

architectural framework, the publisher generates and

disseminates data via DDS, while the subscriber

selects and receives only the necessary data through

DDS [3].

Kubernetes automates the deployment, scaling, and

governance of containerized applications, thereby

simplifying the construction and management of

intricate software systems. CNI plug-ins are

responsible for the management of network

connections among the containers [4].

B. Experimental Setup and Configurations

The experimental setup used in this study employed

a Kubernetes environment installed on three virtual

machines (VMs) within the VMware framework. Each

VM played a distinct role; one functioned as a master

node, while the remaining two were designated as

worker nodes. One worker node was assigned the role

of the DDS publisher, with the other serving as a DDS

subscriber. An additional VM, positioned external to

the Kubernetes environment, was employed to store

the data received by the subscriber in a PostgreSQL

database. To facilitate the independent operation of

the two DDS environments—RTI DDS and OpenDDS—

on the worker nodes, the namespace within the cluster

was logically segmented. Each VM was equipped with

the requisite software and modules, including Kube-

Router and Flannel, to establish a Kubernetes network

environment. Table 1 provides the specifications of

the master and worker nodes.

Fig. 1. Analysis Environment implementation

Specification Master Worker1 Worker2

Hardware

CPU 12th Gen Intel® Core™ i7-12700

Memory (RAM) 16 GB

Software

Operating System Ubuntu 20.04 LTS (64bit)

Orchestration KubeAdmin v1.24.14

Container Containerd 1.7.3

CNI Plugin
Flannel 0.22.0

Kube-Router 1.6.0

DDS
RTI Connext DDS v6.0.1

OpenDDS v3.24.1

Table 1. Specification of the master and worker node

C. Performance Evaluation

The performance analysis was conducted when the

data size was 10K. Figure 2-(a) illustrates the

throughput results for both RTIDDS and OpenDDS. In

the scenario utilizing the Kube-Router CNI plug-in,

RTIDDS reached a throughput of 4024.1 Mbps, while

OpenDDS achieved a more substantial throughput of

6032.6 Mbps. In a parallel test utilizing the Flannel

CNI plug-in, RTIDDS registered a throughput of

3185.4 Mbps, with OpenDDS recording a throughput of

4823.1 Mbps. In both instances, OpenDDS

demonstrated superior throughput performance.

Fig. 2-(a). Throughput test results

Figure 2-(b) represents the latency assessment

outcomes for the RTIDDS and OpenDDS. Employing

the Kube-Router CNI plug-in, RTIDDS exhibited a

latency of 166 µs, in contrast to OpenDDS, which

showed a reduced latency of 119 µs. Subsequently,

under the conditions facilitated by the Flannel plug-in,

RTIDDS demonstrated a latency of 151 µs, while

OpenDDS posted a marginally shorter latency of 123

µs. Once again, OpenDDS displayed superior

performance in terms of latency.

Fig. 2-(b). Latency test results

Ⅲ. Conclusion

This study offers a comprehensive performance

evaluation and optimization framework for systems

that integrate container-based applications with DDS

technology and highlights why OpenDDS has emerged

as a more economical and efficient alternative to

RTIDDS, particularly in terms of throughput and

latency metrics. In conclusion, this study is anticipated

to significantly advance the efficient deployment and

operation of applications. Moreover, it aims to

contribute to the success of future initiatives involving

distributed systems and cloud computing environments.

ACKNOWLEDGMENT

This work is supported by the Korea Agency for

Infrastructure Technology Advancement (KAIA) grant

funded by the Ministry of Land, Infrastructure and Transport

(Grant RS-2023-00244769, Development of a data

framework for integrating building energy datasets and

applications to accelerate carbon neutrality in the building

sector)

REFERENCES

[1] P. Sujatha and R. Vijaya, “Cloud Computing using Open-

Source Solution – Open-Stack,” Int. J. Appl. Eng. Res.,

vol. 9, no. 27 Special Issue, pp. 9636– 9639, 2014.

[2] Je-man Park, “A Fast DDS Data Transport Protocol for

Large-Scale CPS Middleware”, Ph.D. thesis, Dept.

Electronic & Computer Eng, Hanyang University

Graduate School, pp. 10-13, 2014

[3] Ki-jung Kwon, "DDS-based middleware framework for

large network-centric systems," Ph.D. thesis, Dept.

Computer Eng., Chungnam National University Graduate

School, pp. 36– 40, 2012.

[4] S. Novianti and A. Basuki, "The Performance Analysis of

Container Networking Interface Plugins in Kubernetes,"

6th Int. Conf. on Sustainable Information Engineering and

Technology, 2021.

