

 Workflow-based Recovery for Network Congestion in Kubernetes Environment.

Ta Phuong Bac, YoungHan Kim*,

Soongsil University

bactp@dcn.ssu.ac.kr, younghak@ssu.ac.kr*

Abstract
Kubernetes is one of the most widely recognized and convenient open sources for deploying

and orchestrating containerized applications. However, Kubernetes enforces resource

limitations and employs scheduling mechanisms that only consider CPU and memory but also

overlook network considerations. As a result, network fair sharing among pods and applications

cannot be maintained. It may lead to congestion problems when workloads critically depend on

network resources. Therefore, in this paper, we propose workflow-based recovery solutions

for addressing network congestion problems in Kubernetes environments. Workflow-based

recovery works incorporated with machine learning-based network congestion predictions to

enable proactive recovery from predicted results. The remediation process is firmed into

workflow and automatically performs recovering action following defined logic. In this study,

two basic recovery workflows, P2P_congested and N2N_congested, are presented to address

network congestion at the service level and node level.

Ⅰ. INTRODUCTION

Utilizing containerization empowers IT development

teams to operate fast, deploy highly efficient software,

and manage operations at an unprecedented scale.

Simultaneously, managing large-scale applications

deployed in the cloud poses a significant challenge for

many organizations due to the escalating complexity of

enterprise computing requirements [1-2]. To tackle

these challenges, sophisticated automation and

orchestration platforms have been developed.

Currently, Kubernetes [3] stands out as a widely

recognized and convenient tool for deploying and

orchestrating container systems composed of diverse

components. Deploying a service platform involves the

sequential configuration of each service, demanding

careful coordination of internal and external resources.

In Kubernetes, Pods serve as the smallest deployable

entities that can be created and managed on the

physical nodes. A pod is essentially a collection of one

or more containers (e.g., Docker containers) operating

on the same node, sharing underlying resources such

as CPU, memory, and network. Whether within a public

or private cloud infrastructure, the shared utilization of

resources among various workloads enhances the

efficiency of the physical infrastructure, ultimately

reducing operational costs. However, multiple

workloads on the same server can lead to performance

interference due to competition for shared resources.

 Kubernetes incorporates resource limitation and

resource-aware scheduling for CPU and memory,

enabling the Kubernetes scheduler to identify nodes

with sufficient available resources for pod placement.

However, Kubernetes does not manage the network

setup for communication between pods. It adopts a

plug-in architecture for networking utilizing a variety

of projects (such as Calico [4] and Cilium [5])

supporting a wide variety of networking needs.

Consequently, it lacks built-in support for network

management solutions. Without network considerations,

we cannot maintain a fair network share among pods

with the same priority. Ensuring network quality,

allocating bandwidth to specific pod networks, and

addressing storage I/O-intensive workloads cannot be

guaranteed. As a result, the workload may suffer sub-

optimal performance when contending for the network,

especially leading to congestion in clusters.

To address network congestion issues, we propose a

workflow-based recovery for network congestion in

Kubernetes environments. In this approach, a

workflow-based recovery module is developed in

integration with other modules, such as machine

learning-based network congestion predictions and

root cause analysis to predict congestion situations of

the system and then predict the root cause of the

problem and send it to the recovery module. This study

automatically performs the recovery process by

declaring workflow incorporation with other system

APIs to perform recovery action. Istio [6] service

mesh is leveraged to collect more service metrics, and

it also does recovery action at the service level and is

flexible in system upgrades to large-scale. The details

of system architecture will be presented in the

following section.

Ⅱ. PROPOSAL SYSTEM PROCEDURE

 In this section, we discuss the main architecture of

workflow recovery approaches proposed for handling

network congestion in the Kubernetes environment.

The overview of the workflow-based recovery system

procedure is illustrated in Figure 1.

mailto:bactp@dcn.ssu.ac.kr
mailto:younghak@ssu.ac.kr*

As shown in Figure 1, Kubernetes-based infrastructure

is monitored by several monitoring agents to get

network metrics. In this proposal, we used Istio to

collect network metrics data of service level from

containerized applications. Istio also makes it possible

to handle the system on a large scale, and further

requirements, such as traffic limiting and access control,

will be integrated into a workflow-based recovery

module to define and execute the remediation action to

avoid network congestion. Network metrics from cloud

infrastructure, then streaming to Network Congestion

Prediction for predicting congestion status.

The main part of our proposal is a workflow-based

recovery module, which consumes results from the

network congestion predictions module to determine

which action needs to be performed to recover the

system from congestion status to normal status and

guarantee network quality for service. The logic of

workflow processing is declarative, making it flexible

and efficient to adapt to system changes and upgrades.

In this initial proposal, we consider two main recovery

workflows, P2P_congested and N2N_congested, for the

workflow mapping part. In particular, P2P_congested

responsibilities for handling network congested from

pod to pod level, in which one pod can consume higher

traffic and affect network quality in the cluster and

service quality. Istio service mesh is combined in this

workflow’s type to handle congestion status by several

recovery actions such as traffic limiting and breaking

by the circuit breaker. In N2N_congested, node

network congestion is considered, in which network

communication from node to node is the root cause,

such as delay in the network interface of the Linux host.

N2N_congested will trigger kubeAPI to inform network

congestion problems in nodes (worker nodes), and then

the congested node can be replaced or restarted to

mitigate the congested situation. Also, consider

migrating/scaling services from a congested node to

another node to ensure service quality.

IV. CONCLUSION

In this paper, we present a new approach for recovering

network congestion in Kubernetes environments. We

provide system procedures with two types of recovery

workflow, P2P_congested and N2N_congested, for

handling network congestion at the pod and node levels.

Istio service mesh is leveraged to get network metrics

and perform remediation action in congested situations.

With this approach, the recovery process can

automatically be executed and incorporated with

prediction modules. Recovery’s logic can be defined in

a declarative way, making it flexible with system

changes and easy to configure. In the future, we will

research efficiency recovery’s logic for two proposed

workflows and create other workflows to cover system

availability in network congestion problems fully, then

implement the proposed solutions.

ACKNOWLEDGMENT

This work was partly supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)

grants funded by the Korea government (MSIT) (No. 2020-0-

00946, Development of Fast and Automatic Service recovery

and Transition software in Hybrid Cloud Environment) and

(No.2022-0- 01015, Development of Candidate Element

Technology for Intelligent 6G Mobile Core Network).

REFERENCES

[1] Ogbole, M., Ogbole, E., & Olagesin, A. (2021). Cloud

Systems and Applications: A Review. International Journal

of Scientific Research in Computer Science, Engineering

and Information Technology, 142-149

[2] Zhang, Teng, and Lihong Du. ”Research on IT Operation

and Maintenance and Management and Maintenance

Methods in Cloud Computing Environment.” 2022

International Conference on Creative Industry and

Knowledge Economy (CIKE 2022). Atlantis Press, 2022.

[3] Kubernetes, https://kubernetes.io/. Last Accessed 05 Jan,

2024.

[4] What is project Calico, https://www.tigera.io/project-

calico/. Last Accessed 05 Jan, 2024

[5] What is Cilium, https://cilium.io/get-started/. Last

Accessed 05 Jan, 2024

[6] The Istio service mesh,

https://istio.io/latest/about/service-mesh/. Last Accessed

05 Jan, 2024.

Figure 1 Workflow-based recovery: system procedure

https://kubernetes.io/
https://www.tigera.io/project-calico/
https://www.tigera.io/project-calico/
https://cilium.io/get-started/
https://istio.io/latest/about/service-mesh/

