

A Design of KPT based Continuous Delivery for Kubernetes Workloads over

Distributed Edge Clouds

Huy Thang Tran*, Young Han Kim

Soongsil University

trhthang0401@dcn.ssu.ac.kr*, younghak@ssu.ac.kr

Abstract
In the distributed cloud environment of Kubernetes, the manual deployment of tailored

clusters alongside the deployment of applications on each edge cluster can result in errors

and demand significant efforts. Navigating the intricacies of managing individual edge clusters

becomes particularly challenging, especially in the context of diverse applications. This paper

introduces a design that harnesses the power of the KPT in tandem with extended Kubernetes

Operator and GitOps. The focus of this study is to tailor cluster management, elevate

automation, and enhance reproducibility specifically for Kubernetes Workloads over

Distributed Edge Clouds.

Ⅰ. INTRODUCTION

Technologies like distributed cloud enable on-

demand, API-driven access to the edge. Unfortunately,

existing brittle, imperative, fire-and-forget

orchestration methods struggle to take full advantage

of the dynamic capabilities of these new infrastructure

platforms. To succeed at this, Nephio uses new

approaches that can handle the complexity of

provisioning and managing a multi-vendor, multi-site

deployment of interconnected network functions

across on-demand distributed cloud [1]. Nephio aims

to simplify and enhance the deployment of multi-

cluster workloads [2], emphasizing GitOps principles

for secure, adaptable, and robust networking solutions

across diverse clusters supporting various

applications.

While Nephio offers streamlined management, the

absence of an automated method for developing and

configuring Kubernetes clusters remains a notable gap.

In response, the Kubernetes Package Tool (KPT) [3]

enters the scene, designed to automate editing tasks

and promote a Configuration as Data approach. By

fostering a clear separation between configuration and

current state, KPT simplifies the management of

Kubernetes configurations and aligns with the

Kubernetes Resource Model (KRM). This approach

contributes to a unified ecosystem, facilitating

consistent and adaptable configuration management.

Within the KPT ecosystem, a flexible and unified

deployment process for Kubernetes configurations

involves the integration of various tools. Package

Orchestration, represented by Porch, plays a pivotal

role in managing the entire lifecycle of configuration

packages. Porch, functioning as a service, seamlessly

aligns with workflows, offering a user-friendly

experience akin to the Backstage plugin's proof-of-

concept.

Cluster API, another essential component in the

multi-cluster environment, streamlines Kubernetes

cluster management by automating provisioning and

lifecycle tasks through familiar manifests. This open-

source tool enhances scalability and consistency

across diverse environments.

Nevertheless, the creation of custom clusters and

the deployment of software in a step-by-step manner

within a multi-cluster environment pose significant

challenges in terms of effort and time. Ensuring

accurate and swift deployment across various clusters

is a complex task.

Therefore, this paper introduces a novel design for

efficiently deploying custom Kubernetes clusters

based on user preferences. The proposed approach

leverages the KPT methodology, Cluster API, and

extended Kubernetes Operators to support continuous

deployment workflows. The subsequent section

provides an in-depth exploration of our innovative

approach, specifically tailored for Kubernetes

workloads over distributed edge clouds.

Ⅱ. THE PROPOSED ARCHITECTURE

In this section, we delineate a range of components

and detail their specific functions in the context of an

efficient, automated framework for the deployment

and ongoing management of multiple clusters. This

includes the automated installation and updating of

software across new and existing clusters.

Clusters are differentiated into two main types:

Management Clusters and Workload Clusters. The

management cluster is the hub where we coordinate

the development of package declarations and the use

of advanced Kubernetes operator solutions, along with

leveraging the Cluster API project. This cluster acts

as the control plane, directing and managing the

operations and lifecycle of workload clusters.

In contrast, a Workload Cluster is where deployed

workloads are coordinated by the Management Cluster.

In these Workload Clusters, your software is actively

run and maintained, ensuring efficient performance in

real-world environments. A clear division of

responsibilities between these clusters is critical to

establishing a seamless, scalable architecture that

competently manages and executes multiple complex

workloads with relative ease.

mailto:trhthang0401@dcn.ssu.ac.kr*
mailto:younghak@ssu.ac.kr*

Figure 1 Diagram of supporting functionalities

 As depicted in Figure 1, the essential elements

comprise Package Orchestration (Porch), expanded

Custom Resource Definitions (CRDs) known as

WorkloadDeployment CRD and WorkloadCluster,

controllers named WorkloadDeployment controller and

Cluster Bootstrap Cluster, and WebUI. The specifics

of these functionalities are outlined below.

WorkloadDeploymentOperator: defines customized

clusters and outlines the detailed deployment of

specific packages intended for use on these newly

created clusters. Users have the flexibility to specify

one or multiple packages from various repositories for

deployment on the recently established cluster. The

WorkloadDeployment controller harmonizes the

WorkloadDeployment CRD and generates two

corresponding CRD types: WorkloadCluster CRD and

PackageVariant CRD. Figure 2 provides an example of

a WorkloadDeployment CRD.

Figure 2 WorkloadDeployment CRD

WorkloadCluster Operator : The WorkloadCluster CRD,

produced by the WorkloadDeployment controller,

contains infrastructure details for a customized cluster.

The Cluster Bootstrap controller collaborates with the

Cluster API controller to create a cluster, currently a

KinD cluster. It then independently initializes the

linked Git repository for the newly created cluster,

deploying ConfigSync automatically for

synchronization with the cluster's Git repository.

Figure 3 shows a WorkloadCluster CRD example:

Figure 3 WorkloadCluster CRD

PackageVariant CRD and Porch: The

WorkloadDeployment controller creates the

PackageVariant CRD, which holds data packets

orchestrated from the upstream Git repository to the

downstream Git repository. This orchestration is

automated by Porch. Figure 4 illustrates a

PackageVariant CRD example:

Figure 4 PackageVariant CRD

WebUI: In addition to the CLI, providing a UI to

suppport users in interacting with the system.

Ⅲ. CONCLUSION

Starting with user interaction via the

WorkloadDeployment CRD, the deployment pipeline

smoothly transitions to the Cluster Bootstrap phase.

Led by the Cluster Bootstrap Controller and Cluster

API, this phase not only sets up clusters but also

automatically initializes a Git repository and deploys

ConfigSync. This holistic process optimizes cluster

management and automation, inherently advancing

reproducibility.

ACKNOWLEDGMENT

This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)

grants funded by the Korea government (MSIT) (No. 2022-

0-01015, Development of Candidate Element Technology

for Intelligent 6G Mobile Core Network)

REFERENCES

[1] Nephio. About Nephio. Mar. 15, 2023. url:

https://nephio.org/about

[2] Dina, Laurent, Lukas Schlunegger, and Marc Eberhard.

Cloud Native Intent Automation. Diss. OST Ostschweizer

Fachhochschule, 2023.

[3] KPT. KPT Concepts. Apr. 9, 2023. url:

https://kpt.dev/book/02-concepts/.

[4] KPT. KPT Config Sync. June 15, 2023. url:

https://kpt.dev/gitops/configsync/.

