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Abstract 

 
Efficient auto-scaling is a vital requirement for serverless computing to to optimize service 

performance and resource provisioning. Recently, by utilizing reinforcement learning 

technique’s benefits, many enhanced serverless auto-scaling approaches were proposed to 

improve the performance of threshold-based auto-scaling mechanisms in current serverless 

platform. This paper provides a short comprehensive review of current existing solutions, 

categorizes, analyzes their characteristics, and discusses their limitations. 

 

 

Ⅰ. INTRODUCTION  

Serverless computing is the emerging paradigm for 

deploying applications at the cloud and edge 

environment. This paradigm enables users to focus on 

application development, while the serverless platform 

automatically handles service deployment, service 

scheduling, resource provisioning, etc. Auto-scaling is 

one of these automated service of serverless 

computiung. In current open-source and commercial 

serverless platforms, auto-scaling is controlled by 

using threshold-based mechanisms. When a specific 

resource consumption of all service instances reaches 

the pre-configured threshold, new instances are 

deployed or deleted. However, these static 

mechanisms are not the optimal solutions when 

handling dynamic service demands such as real time 

traffic adaptation, resource contention, or service-

level-objectives (SLO) requirements, etc.  

Recently, several works has applied Reinforcement 

Learning (RL) and Deep Reinforcement Learning 

(DRL) to optimize the auto-scaling performance of 

serverless computing. RL is known for its great 

capabilities of solving decision-making problems that 

have dynamic requirements. Hence, it is a suitable 

method for finding dynamic auto-scaling solution in 

complex serverless computing environment. To the 

best of our knowledge, there is lack of studies that put 

together and analyze existing RL auto-scaling 

approaches for serverless computing. The work [1] 

only listed and described several existing RL works 

without categorization or analysis.  

This paper provides a short comprehensive review 

of current state-of-the-art research on RL auto-

scaling for serverless computing. We categorizes and 

analyzes them based on types and characteristics. The 

current open issues and challenges of these works are 

also discussed. 

 

Ⅱ. REINFORCEMENT LEARNING SERVERLESS 

AUTO-SCALING APPROACHES TAXONOMY 

Current RL serverless auto-scaling works have 

different optimization targets. In this section, we 

catogorize and discuss them based on 4 different 

aspects: Scaling methods (how the instances are 

scaled), Serverless sytem types (the solution targets 

which kind of serverless system), Concurrent services 

consideration (the solution optimizes for separate or 

multiple concurrent services), and Timing (when the 

auto-scaling decision is applied). Figure 1 shows the 

different aspects of related works that we discuss. 

 

  

Figure 1. Different categories of Reinforcement 

Learning serverless auto-scaling  

 

 

 

 



 

A. SCALING METHODS 

There are 2 types of scaling methods being used in 

existing works: Horizontal scaling and Hybrid scaling. 

- Horizontal Scaling: There are 2 types of action 

sets for RL models used in related works of this 

category. The first type is modifying the number 

of instances. The sescond type is modifying the 

resource threshold of the serverless platform’s 

default horizontal auto-scaler configuration. For 

the first type, in [2] and [3], the RL model 

analyzes current running services’ request 

queue characteristics and system available 

resource to choose the appropriate number of 

instances to scale. In [4] and [5], the RL agent 

prepares the optimal number of service 

instances in advance to avoid the cold-start 

problem of serverless services. For the latter 

type, the Knative service’s request concurrency 

scaling threshold is the target action set in [6]. 

The Kubernets horizontal auto-scaling’s CPU 

and memory thresholds are the target action 

sets in [7], [8] 

- Hybrid Scaling: RL agent’s actions of this 

category simutaneously change both number of 

instances (horizontal scaling) and each 

instance’s assigned resource (vertical scaling). 

Only 3 works [9], [10], [11] belongs to this 

category. The horizontal actions are similar to 

horizontal scaling only’s work. The vertical 

actions are changing the container resource 

limitation in [9], [10] and function’s memory 

size in [11]. 

 

B. SERVERLESS SYSTEM TYPES 

Based on the solution’s optimization goal, current 

RL serverless auto-scaling works can be applied to 2 

different kinds of serverless systems: Resource 

consumption-based and Resource quota-based. 

- Resource consumption-based: In this type, the 

serverless system provides resource amount 

equal to how much the serverless services need 

to consume. Related works of this category do 

not have any upper total resource constraint or 

limitation defined in the RL agent’s environment. 

Generally, these solutions target pay-as-you-

go serverless users, optimize services’ 

resource consumption and performance. Most of 

the current RL auto-scaling works belong to 

this category ([4]-[12]). 

- Resource quota-based: In this type, the total 

available resource that serverless services can 

consume is limited by a quota. This quota can 

be the whole system resource (e.g. limited 

resource in edge environment) or an assigned 

part of the total resource. For this serverless 

environment, the RL agent need to analyze the 

remaning resource in each environment state to 

decide the optimal scaling action that does not 

overuse the resource quota. Only 2 works ([2] 

and [3]) of the same author belongs to this 

category. 

 

C. CONCURRENT SERVICES CONSIDERATION 

The major of existing works optimizes auto-scaling 

performance for each separate service. A separate RL 

agent is required for each service. By optimizing each 

one, the aggregated performance of all services can 

also be optimized. Generally, these works target the 

resource consumption-based serverless system 

where there are no total system resource limitation. 

Hence, although all services are concurrently running 

inside the same system, each service’s RL agent is 

assumed to have little impact on the others. 

Meanwhile, few works consider the auto-scaling 

performance optimization problem of multiple 

concurrent services. In [9], the authors point out the 

performance degradation problem when different 

separate RL agents of each service run simultaneously. 

They propose a solution to integrated the reward of 

all concurrent RL agent to optimize the aggregate 

auto-scaling performance of the whole system. In [2] 

and [3], the authors consider the limited total 

resource of serverless computing system at the edge.. 

Hence, the RL agent need to decide a suitable action 

that can guarantee enough resource for all concurrent 

services.  

 

D. TIMING 

There are 2 auto-scaling timing categories: 

reactive and proactive. Reactive auto-scaling methods 

decide and execute scaling action based on current 

monitored states of the environment. Meanwhile, 

proactive auto-scaling methods predict the future 

states of the environment and pre-execute scaling 

action before the future states actually happen. 

Currently all of existing RL serverless auto-scaling 

works are reactive auto-scaling solutions. 

 

E. CATEGORIZATION SUMMARY 

Table 1 presents how all current existing RL 

serverless auto-scaling works belongs to different 

categories that are discussed above. Note that all 

works belong to reactive scaling timing category. 

Hence, Table 1 does not include the Timing category 

aspect. 

 

Work Scaling 

Method 

System 

Type 

Concurrent 

Service 

[2] Horizontal Quota Multiple 

[3] Horizontal Quota Multiple 

[4] Horizontal Consumption Separate 

[5] Horizontal Consumption Separate 

[6] Horizontal Consumption Separate 

[7] Horizontal Consumption Separate 

[8] Horizontal Consumption Separate 

[9] Hybrid Consumption Multiple 

[10] Hybrid Consumption Separate 

[11] Hybrid Consumption Separate 

[12] Horizontal Consumption Separate 

 

Table 1. Reinforcement Learning serverless auto-

scaling works categorization 

 



 

III. CURRENT RESEARCH GAPS AND DIRECTION 

In this section, we diecuss several current 

remaining challenges of current existing works and 

possible future directions. 

- Proactive RL auto-scaling: All current works 

are reactive auto-scaling methods, which 

execute scaling actions only when new demands 

are detected. During new scaled instances 

initializing, the whole system performance will 

be affected until new instances are ready. 

Proactive auto-scaling has been proposed and 

tested in several normal machine learning auto-

scaling methods and significantly improve auto-

scaling performance against reactive methods. 

Hence, proactive methods should also be 

applied to RL solutions.  

- Vertical Scaling Instances Restart: This is 

general problem of vertical scaling in hybrid 

scaling methods. A method that avoid service 

instances restart or redeployment when 

changing their assigned resource is required to 

further improve performance of hybrid scaling 

approaches. It can help to avoid additional 

resource usage while scaling new assigned 

resource instances. Additionally, service 

interruption can also be avoided. Recently, 

Kubernetes has announced this feature in the 

alpha test of version 1.27 [13], which can solve 

the mentioned problem. It is suggested to apply 

this feature In the future works of serverless 

computing auto-scaling. 

- Scalability: This is a consideration for RL 

methods that consider multiple concurrent 

services. The simpler implemetation method is 

using a single RL agent that handle the 

environment consisting of all services ([2], [3]). 

However, the RL model is required to be re-

trained if the total number of services changes. 

The more services the system has, the more 

complex the environment is. It can cause long 

training and convergence time. Meanwhile, if 

there are multiple agents for each separte 

service and a reward aggregation function is 

applied as proposed in [9], many RL models are 

required to be trained for each service. The 

complexity of the reward aggregation function 

should also be evaluated.  
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