

Kubernetes-based MEC Architecture

Van-Binh Duong, Minh-Ngoc Tran and Younghan Kim*

Soongsil University

binhdv@dcn.ssu.ac.kr, mipearlska1307@dcn.ssu.ac.kr, younghak@ssu.ac.kr *

Abstract

 Multi-access Edge Computing has brought great benefits to the development of networks. It

gives the network the ability to provide storage and compute capabilities at the edge, which

helps reduce latency, improve data privacy, and fulfill the requirements of many increasing

users. However, the current design of MEC architecture needs to keep up with the updates of

technologies, especially in the cloud, regarding network characteristics, management, and

environments. Meanwhile, Kubernetes is currently well-known for its accelerations in

scalability and management of clusters. Thus, it is necessary to provide a straightforward and

flexible design that can effortlessly adapt MEC to Kubernetes to take advantage of the

efficiency of Kubernetes in cloud environments. Consequently, the research aims to contribute

to the design of MEC orchestration targeting cloud environments. The architecture

evaluations show that the proposed design provides high capabilities of scalability and

computing management.

Ⅰ. INTRODUCTION

The introduction of the 5G network has made a

large improvement in internet connection speed

affecting not only life living but also industrial

developments. This leads to the rise of security and

scalability problems caused by the increase of

provided services and users. Therefore, MEC has

been introduced as a technology to enable the network

to provide computing and storage capabilities at the

edge in the purpose of giving near real-time services

and securing the user data. Nevertheless, developing

an effective MEC orchestration is challenging with

many factors that need to be considered (e.g.,

networking, technology, system adaptation, etc.). As

introduced in the ETSI GR MEC 017 [1], the

integration of Network Function Virtualization (NFV)

and MEC placed a first step to adopting MEC into

cloud. However, there are overlaps and partial

compatibilities in MEC and NFV components which

could prevent MEC from providing the best

performance. As a result, the paper proposes a design

of Kubernetes-based MEC orchestration architecture

for cloud. With benefits from Kubernetes, MEC

architecture is redesigned to give more flexibility in

both management and scalability.

II. BACKGROUND

A. MULTI-ACCESS EDGE COMPUTING

 Multi-access Edge Computing (MEC) [2] is the

implementation of mobile edge applications as

software-only entities that run on top of a

virtualization infrastructure, which is located in or

close to the network edge. The Mobile Edge

Computing framework shows the general entities

involved. MEC architecture comprises Mobile edge

system level, Mobile edge host level, and Mobile edge

network level entities. The mobile edge host level is

constructed by two components Mobile edge host and

Mobile edge host level management.

B. MEC IN NFV ENVIRONMENT

 When integrating MEC into NFV [1], MEC

instantiates Virtualized Network Functions (VNFs)

near end users by deploying computing resources at

the edge through the usage of NFV's virtualization

concepts. The MEC platform is deployed as a VNF

using the ETSI NFV protocols. Reusing existing ETSI

NFV MANO functionality is possible via MEC apps.

The Virtualization infrastructure is deployed as a

Network Functions Virtualization Infrastructure (NFVI),

and its virtualized resources are managed by the ETSI

NFV-defined Virtualized Infrastructure Manager (VIM).

The notions of NFVI-PoP (NFVI Point of Presence)

replace the traditional idea of a MEC host in this

context. The Mobile Edge Platform Manager-NFV

(MEPM-V), which replaced the MEC platform manager,

assigns one or more Virtual Network Function

Managers (VNFM) to handle the Life-cycle

management (LCM) component. However, the Mobile

Edge Application Orchestrator (MEAO) has replaced

the previous name of the MEC orchestrator. The

MEAO interfaces with the NFV Orchestrator (NFVO)

to utilize its resource orchestration and the

orchestration of the set of MEC application VNFs as

one or more NFV Network Services (NSs). However,

the challenging issue is the mapping of the concept of

MEC host to NFV. Both NFV and MEC use descriptors

to define information to instantiate a VNF and an

Application, respectively. It causes the descriptors

partial compatibility issue in this design.

Figure 1: Kubernetes-based MEC architecture.

III. PROPOSED ARCHITECTURE

 To obtain a simple and flexible architecture design of

MEC for service orchestration in cloud, this paper

proposes the use of Kubernetes in designing MEC. In

the Kubernetes (K8s) environment, MEC concepts can

be replaced with available ones in K8s and supported

technologies in K8s ecosystem and some entities in

MEC can be reduced. As in Figure 1, the MEC DNS

handling is not shown because DNS is taken care of by

Kubernetes’ default components. The strength of the

Kubernetes-based design is the scalability of the

system where many clusters can be deployed and

managed by a central management cluster.

 Furthermore, management entities of MEC could be

developed as Custom Resource Definitions (CRD)

which is a technique to extend K8s functions. Figure 1

shows that components such as Mobile Edge

Orchestrator are in the management cluster to handle

the management flows. They could be CRDs managing

sub-CRDs in clusters and, in clusters (e.g., Cluster 1

in Figure 1), management components located in ME

Master are sub-CRDs using CR provided by controller

CRDs to manage corresponding working flows inside

the cluster.

 Concretely, there are two sorts of MEC management

components, the first one includes Mobile Edge

Orchestrator (MEO), Virtualization Infrastructure

Manager (VIM), and ME App Lifecycle Management

(MEALM) which are located in the management

cluster. The MEO is responsible for deploying ME

clusters, the resource availability in each cluster, and

the applications that are instantiated. The VIM’s role

is to manage the underlying virtualized infrastructure

that supports the cloud services, monitor the

performance and health of virtualized resources, and

generate related reports. The MEALM involves the

instantiation and termination of the applications and

applies traffic rules and requests to deployed

applications in the cluster. Meanwhile, the second sort

comprises ME App rules & Reqts Management and ME

App Lifecycle Management. They are located in the

ME Master of each ME cluster to handle management

requests from MEALM.

 Besides, ConfigSync [3] and Porch [4] provide the

GitOps and configuration automation ability for the

K8s cluster. ConfigSync allows operators to manage

K8s deployments. It can support managing multi-

clusters, role bindings, resource quotas, etc. Porch is

used with ConfigSync to automate the configuration of

interconnected network functions and the underlying

infrastructure. It also supports the revisions of

deployed clusters. This means the older cluster

configurations can be saved as packages and re-

deployed when needed.

IV. CONCLUSION

 In this paper, a proposal of Kubernetes-MEC

deployment architecture is introduced. With the

advantages of Kubernetes, most aforementioned

problems of NFV-MEC can be resolved. Kubernetes

provides MEC with an extreme capability to keep up

with updates of cloud techniques as well.

ACKNOWLEDGMENT

This work was supported by Institute of Information &

communications Technology Planning & Evaluation(IITP)

grant funded by the Korea government(MSIT) (No.2020-0-

00946,Development of Fast and Automatic Service recovery

and Transition software in Hybrid Cloud Environment).

REFERENCES

[1] ETSI GR MEC 017 V1.1.1, “Mobile Edge Computing

(MEC); Deployment of Mobile Edge Computing in an NFV

environment”, 2018.

[2] ETSI GS MEC 003 V1.1.1, “Mobile Edge Computing

(MEC); Framework and Reference Architecture”, 2016.

[3] “Config Sync Overview | Config & Policy.” Google Cloud,

Accessed 8 Jan. 2024.

[4] “Package Orchestration Server.” Kpt Documents.

Accessed 8 Jan. 2024.

