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Abstract—Ultra-dense small cell deployment in 5G networks
leads to heterogeneous networks (HetNets) and makes mobility
management more complex. Supporting seamless connectivity to
diverse mobile users in HeNets by optimizing handover perfor-
mance is one of the major challenges of mobility management.
Knowledge of the mobility state of users for the handover
process increases the handover performance since handover
control parameters settings depend on user speed. In this work, a
machine learning algorithm is used for classifying users’ mobility
states into one of three mobility states defined by 3GPP in
HetNets. Users’ sojourn times in small cells are used to train
the feedforward neural network. The simulation results show
that using cell sojourn time, the proposed feedforward neural
network achieves satisfactory performance.

I. INTRODUCTION

Mobility management has emerged as one of the most
critical challenges in heterogeneous networks (HetNets) due
to the deployment of small cells in the traditional macro cell-
only networks to meet the demand for wireless data from
billion of user equipments (UEs) [1]. Mobility management is
required to ensure continuous connectivity to mobile UEs for a
higher quality of service (QoS). Utilizing the mobility context
in terms of UE’s speed range for mobility management not
only optimizes handover performance, especially in HetNets
but also helps for efficient resource scheduling, load balancing,
and energy efficiency enhancements [2]. The 3rd Generation
Partnership Project (3GPP) specified a mechanism to detect
UE speed range, referred to as mobility state estimation
(MSE), based on the number of handovers over a specified
period of time [3]. In MSE, three mobility states are defined
based on handover counts: a normal mobility state, a medium
mobility state, and a high mobility state. The baseline proce-
dure of MSE is insufficient for HetNets to differentiate UE’s
mobility state because of the different sizes of cells and UE
mobility behaviors.

The diversity of user behaviors in terms of movement trends
imposes a challenge to establish a mechanism to detect the
mobility state of UEs. Consider a scenario in Figure 1, UE1
and UE2 are both moving with the same speed and different
trajectories. UE2 experiences more handovers than UEl in
a predefined interval, leading to the overestimation of the
mobility state for UE2. A weighting-based MSE procedure
was proposed for HetNets in [4] to enhance the existing
MSE scheme, where different weight factors are assigned to
different handover types giving higher weight for macro-to-
macro handovers and smaller weights for handovers involving
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Fig. 1. UEs with same speed and different linear trajectories [5].

small cells. The weighting-based MSE did not incorporate
the UE trajectory, which led to an incorrect estimation of
UE mobility. An enhanced MSE approach was proposed to
consider the UE trajectory in [5]. However, only a linear
trajectory was assumed, which is unrealistic.

In this paper, we utilize a machine learning algorithm to
classify UE mobility states in HetNets. To detect a UE mobility
state in real-time, small cells’ sojourn time from user history
information is utilized instead of handover counts to tackle the
dynamic user mobility behavior. A shallow feedforward neural
network is designed and trained, which achieves an accuracy
of more than 93% on the test set.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a two-tier HetNet that includes both macro cells
and small cells. The cells in the network are interconnected
through the X2 interface, which allows them to directly
communicate with each other and perform functionalities such
as handovers, load management, mobility optimization, etc.
As a result, UE handovers can take place between macro
cells and small cells, between small cells, and between macro
cells, as well, for seamless connectivity. We considered the
computing, storage, and networking resources are integrated
with the base station using mobile edge computing. We ignore
the dual connectivity capability of UEs in this study, therefore
UEs are only paired with one cell at a time. In addition, each
UE is associated with one of the mobility states out of three
mobility states and moves within the network.

In this work, we focus on the training of the artificial neural
network (ANN) model for mobility state detection of UEs. The
aim is to minimize the cross-entropy loss, i.e., an error between
actual and predicted output, by training the ANN model with
the training data. We assume that each UE has available data,
e.g., the user history information [6].



TABLE I
PERFORMANCE OF FEEDFORWARD NEURAL NETWORK ON THE TEST SET

Precision (%)
93.76

Accuracy (%)
93.80

III. MACHINE LEARNING-BASED MSE SYSTEM
EVALUATION

A. Experimental Setup and Training Data Set

We consider a scenario of a dense urban consisting of seven
macro cells and 42 small cells. Macro cells are located with an
inter-site distance of 1000m, and 8 small cells are uniformly
and randomly located in each macro cell. We considered a
random waypoint mobility model that allows each UE to
follow a different trajectory. A bouncing rectangle is used
to keep the UEs within the network such that UE chooses
the destination within the bouncing rectangle. A UE with a
speed between 1.8 km/h to 30 km/h is considered to be in
normal mobility state [5]. A UE with a speed of more than
31 km/h and less than 60 km/hr is considered to be in a
medium mobility state and UE in high mobility state has a
speed between 61km/h to 120 km/h [5].

To collect the training data, we simulate the scenario with
500 UEs for each mobility state one by one. The simulation
time is set to 30 minutes. After 10 minutes of the simulation,
user information including serving cell ID, time instances at
which UE connected to the cell, and leaving the cell are
stored in the log file. A training data set has 5,000 samples
for each mobility state, which are collected from UEs history
information at 10 different instances with a minimum interval
of one minute. The data set consists of a total of 15,000
samples, which are divided into two sets: a training set and
a test set. The training set has 80% of the total data and the
remaining data is used for a test set.

For machine learning architecture, a shallow feedforward
neural network is implemented to reduce the time complexity
of the model. The hidden layer has 150 neurons and the
rectified linear unit (ReLU) activation function is used in the
hidden layer. To get the output of the network, a softmax
function as an activation function is used in the output layer
to predict the probability distribution over output classes.
The sojourn time of UEs in previously visited small cells is
considered the input feature for the training of the feedforward
neural network to classify the UE mobility state.

B. Performacne of Feedforward Neural Network

The performance of the trained feedforward neural network
on the test is shown in Table I. The trained neural network
architecture achieves a test accuracy of 93.80%. A confusion
matrix for the test set is shown in Figure 2, which illustrates
the classification accuracy of the trained ANN on each class of
the test set. Some samples of low-mobility and high-mobility
states are classified as medium-mobility states by the ANN.
This is because some UEs associated with low mobility and
high mobility states have speeds close to lower and upper-
speed ranges of the medium mobility class. Similarly, 81
samples of the medium mobility class are wrongly classified.
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Fig. 2. Confusion matrix for the test set.

The accuracy for low and high mobility classes is 93.64%
and 95.92%, respectively, and the prediction accuracy for a
medium mobility class is 91.76%. Overall, the misclassifica-
tion rate of the neural network is 0.0620.

IV. CONCLUSION

In this paper, we used a machine learning algorithm for
the classification of UE mobility states in HetNets. The UE
history of small cell sojourn times is utilized as input features
to train ANN. Simulation results showed that the sojourn
time in previously visited small cells is a relevant feature
for the classification of user mobility state in HetNets. The
trained feedforward neural network has shown an accuracy of
more than 93% on the test set. The result of this study is
used to update the handover parameters to increase network
performance.
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