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Abstract 

 
Researchers have developed various machine learning models for estimating the battery state of 

charge, and they have employed different optimization techniques due to the uncertainty of the most 

appropriate option. This study investigates and develops a state-of-the-art optimization technique, 

which is the most important parameter of a neural network model. Accurate communication of the state 

of charge is essential for a battery management system to function appropriately. Therefore, a gradient 

descent algorithm that is modified and optimized exclusively for training a state-of-charge estimation 

machine learning model is developed in this study. 

 

 

Ⅰ. Introduction 

Among all the roles of the BMS, state-of-charge 

(SOC) estimation is the primary and most crucial. 

State-of-charge is an indicator of the remaining 

available battery capacity. However, accurate SOC 

communication poses a significant challenge because 

it cannot be measured directly, unlike normal battery 

variables like voltage, current, resistance, and 

temperature. This is because lithium-ion batteries 

have highly time-varying and dynamic characteristics. 

Currently, the most common methods to estimate and 

communicate the SOC of a battery are conventional, 

model-based, and data-driven methods[1]. 

The data-driven method does not require the 

simulation of a battery model or any information 

about the internal parameters of the battery. A 

machine learning (ML) model or algorithm is used in 

this technique, and the technique directly investigates 

the nonlinear relationship between the SOC and 

measured battery features such as voltage, current, 

and temperature[2]. This study develops the 

foundation for a neural network (NN) model for 

optimal SOC communication by investigating the most 

important parameter, the optimizer/optimization 

technique. The optimization technique is essential for 

achieving the best values for the weights and biases, 

which are the parameters responsible for deriving the 

SOC values from NN models under various 

circumstances. 

 

Ⅱ. Method 

 A Python function was built to develop the 

optimization technique. This function used eight input 

arguments: a dataset (which included all battery 

variables), target SOC values, initial gradient descent  

 

Fig. 1 Flowchart of the optimization process. 
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Fig. 2 New Variable from feature engineering. 



(weights and bias) parameters, function, cost function, 

learning rate or alpha, and desired number of 

iterations. The output of this algorithm was a set of 

updated weights and bias parameters after all 

iterations. 

The working process of this developed optimizer is 

displayed in Fig. 1. The first set of weights and biases 

implemented were manually inputted; then, using 

these parameters, the gradient function computed the 

next set of weights and biases that gets the predicted 

SOC value closest to the real SOC value. The cost of 

implementing these parameters was calculated using 

the cost function, and the results were recorded in an 

array. These two processes were repeated for the 

desired number of iterations, and depending on the 

value selected for alpha, the cost either decreased or 

increased after each iteration leading to an accurate 

SOC value that will be communicated to the BMS. 

A battery dataset from the Battery Research Group 

of the Center for Advanced Life Cycle Engineering 

(CALCE) was employed for the SNNA [3]. Feature 

engineering was used to create a new battery variable, 

called New Variable (NV), for the developed optimizer 

from the available battery features in the dataset as 

shown in Fig. 2. Following the feature engineering 

technique, the input dataset has been transformed 

from three to four features as expressed in Eq. (1). 

This dataset simulated three driving cycles: the 

dynamic stress test (DST), US06 highway driving 

schedule, and federal urban driving schedule (FUDS), 

at six temperatures ranging from -10°C to 40°C. This 

makes a total of 18 datasets for the SNNA. 
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Ⅲ. Results 

The cost curves provided the opportunity to 

determine the appropriateness of the learning rate 

after each optimization iteration and allow the value of 

the cost function to be assessed. It was observed from 

the 18 implementations, as shown in Fig. 3, that the 

costs declined, which proved the effectiveness of the 

developed optimizer. 

For the three profiles, the -10°C dataset exhibited 

the lowest initial and final costs at the end of each 

iteration. As the temperature increased, the initial and 

final costs also increased. The convergence behaviors 

of the three drive profiles were highly distinct at low 

temperatures; however, as the temperature increased, 

they developed similarities. Additionally, the 

convergence characteristics of the driving profiles 

nearly matched at temperatures higher than the room 

temperature. 

 

Ⅳ. Conclusion 

This study developed a novel optimization algorithm 

that incorporates a machine-learning technique called 

feature engineering. This optimizer was tweaked and 

tuned specifically for use in SOC estimation machine 

learning models so as to communicate accurate SOC 

to the BMS. The convergence results obtained from 

implementing this algorithm proved the validity of the 

developed optimizer for training any machine learning 

model and to communicate accurate SOC to the BMS. 
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Fig. 3 Convergence curves of the driving profiles 

at each temperature. 


