Transformer를 이용한 LWE 기반 암호 공격 기법 분석

김영준, 신동준
한양대학교 융합전자공학과
june0888@hanyang.ac.kr, djshin@hanyang.ac.kr

Analysis of Attacks on LWE-based Cryptography using Transformers

Youngjun Kim, Dong-Joon Shin
Dept. of Electronic Engineering, Hanyang Univ.

요 약

LWE 문제는 가장 중요한 양자내성암호인 격자 기반 암호와 암호문 상에서 다양한 연산을 수행할 수 있는 완전동형암호 등을 생성하는 기반 난제로 사용된다. 따라서 이 암호들의 안전성을 검증하기 위해서는 LWE 문제를 풀 수 있는 알고리즘들에 대한 분석이 중요하다. 본 논문에서는 기존 제안된 Transformer를 이용하여 LWE 문제를 푸는 기법을 통해 LWE와 RLWE를 기반으로 하는 암호에 대한 안전성을 분석하고, LWE 기반 암호 공격에 필요한 샘플 수를 줄일 수 있는 새로운 기법을 제안한다.

I. 서 론

양자컴퓨터의 발달로 인해 RSA 와 ECC 등의 기존 암호체계가 위협받고 있는 상황에서 양자컴퓨터의 공격에도 안전하다고 알려진 다양한 양자내 성암호(Post-Quantum Cryptography) 기법들이 제안되고 있다. 격자 기 반 암호는 수학적으로 어려운 격자 문제인 LWE(Learning with Errors) 문제 등을 기반으로 생성되는 암호이며 양자내성을 가진다는 점에서 주목 받고 있다. 또한, 암호화된 상태에서도 다양한 연산을 수행할 수 있어 정 보를 더 안전하게 처리할 수 있는 동형암호에서도 기반 난제로써 주로 LWE 문제가 사용된다.
한편, n 차 다항식의 쌍으로 표현되는 RLWE(Ring LWE) 문제에서 하 나의 RLWE 샘플은 (구조화된 형태의) n 개의 n 차원 LWE 샘플로 변환 되기 때문에 효율적 측면에서 LWE보다 RLWE 문제를 기반으로 암호를 설계하는 것이 선호된다. 이러한 구조가 있는 형태에도 불구하고 RLWE 를 효과적으로 공격하는 방법에 대해서는 현재까지 잘 알려지지 않았다. 2022년 Lauter 등은 딥 러닝 모델인 Transformer를 사용한 SALSA 알 고리즘을 통해 128 차원 이하의 LWE에 대한 공격에 성공했다는 실험 결 과를 발표하였다[1]. 이로부터 SALSA와 같은 학습을 기반으로 한 딥 러 닝 모델 공격에서는 RLWE가 LWE에 비해 하나의 RLWE 샘플이 n 배만 큼의 LWE 학습 샘플을 제공하는 효과를 낼 수 있다는 추측에 의해 RLWE가 더욱 취약하다고 예상하였다.
본 논문에서는 SALSA 알고리즘을 이용한 실험을 통해 LWE와 RLWE 를 기반으로 하는 암호에 대한 공격 성능을 비교하고, SALSA 기반 공격 에 필요한 LWE 샘플 수를 줄이는 새로운 기법을 제안한다.
II. 본론

우선 LWE 문제[2]와 RLWE 문제에 대한 정의를 설명하고 SALSA 알 고리즘을 소개한다.

2.1. LWE와 RLWE

주어진 비밀키 $s \in Z_{q}^{n}$ 에 대해 LWE 분포 $A_{m, n, q, \chi}^{L L E}$ 는 $\left(a_{i}, b_{i}=a_{i} \cdot s+e \bmod q\right)(i=1,2, \ldots, m)$ 의 쌍들로 구성된다. 이때, 벡터 a_{i} 의 각 원소값은 Z_{q} 에서 무작위로 추출된 정수이며 e 는 에러 분포
χ 로부터 추출된 정수이다. 본 논문에서는 LWE 분포 $A_{m, n, q, \chi}^{L W E}$ 의 한 LWE 쌍 (a, b) 을 LWE 샘플로 정의하였다.
탐색 LWE(search-LWE) 문제는 $A_{m, n, q, x}(s)$ 에 의해 생성된 $\left(a_{i}, b_{i}\right)$ $(i=1,2, \ldots, m)$ 가 주어졌을 때, 비밀키 벡터 s 를 찾는 문제이다. 결정 LWE(decision-LWE) 문제는 $\left(a_{i}, b_{i}\right)(i=1,2, \ldots, m)$ 쌍들이 주어졌을 때, 이 쌍들이 $A_{m, n, q, x}(s)$ 로부터 생성된 샘플들인지, 무작위로 생성된 샘 플들인지 결정하는 문제이다.
RLWE 문제는 다항식 환 $R_{q}=Z_{q}[x] /(f(x))$ 위에서 정의되는 LWE 문제로 비밀키를 나타내는 다항식 $s(x)$ 에 대해 RLWE 분포 $A_{n, q, \chi}^{R L W E}$ 는 $(a(x), b(x)=a(x) \cdot s(x)+e(x))$ 의 쌍들로 구성된다. 이 때, $a(x)$ 의 각 계수들은 Z_{q} 에서 무작위로 추출된 정수이며 $e(x)$ 의 각 계수들은 에러 분포 χ 로부터 추출된 정수들이다. 본 논문에서는 RLWE 분포의 한 RLWE 쌍을 RLWE 샘플 $(a(x), b(x))$ 로 정의하였다.
탐색 RLWE(search-RLWE) 문제는 $A_{n, q, \chi}^{R L W E}(s(x))$ 에 의해 생성된 $(a(x), b(x))$ 가 주어졌을 때, $s(x)$ 를 찾는 문제이다. 결정 RLWE(decision-RLWE) 문제는 $(a(x), b(x))$ 가 주어졌을 때, $A_{n, q, x}^{R L W E}(s(x))$ 에 의해 생성된 샘플인지 무작위로 생성된 샘플인지 결정 하는 문제이다.

2.2. SALSA 알고리즘

본 논문의 실험은 기존 논문의 알고리즘인 SALSA 알고리즘[1]을 사용 하였으며, 이 알고리즘은 LWE 샘플 (a, b) 의 a 를 입력값으로 받아 b 를 예측하는 Transformer M 에 대해 다음과 같은 순서에 의해 작동한다.

1. LWE 샘플 중 중복을 허용하여 무작위로 $n \times 10,000$ 개를 선택해 M 을 학습시킨다. 모델학습은 b 의 예측값 b^{\prime} 와 실제 b 값 간의 크로스 엔 트로피를 최소화하는 방향으로 이루어진다.
2. 학습된 M 으로부터 비밀키 복원 알고리즘을 사용하여 비밀키의 예측 값 s^{\prime} 를 얻는다.
3. 비밀키 검증 알고리즘을 사용했을 때, $s \neq s^{\prime}$ 라면 1단계로 돌아가서 반복하고, $s=s^{\prime}$ 라면 알고리즘을 종료한다.

- 비밀키 복원 알고리즘

학습이 종료되면 아래의 두 가지 방법을 모두 사용하여 비밀키의 복원을 시도한다.

1) 직접 복원
$i=1,2, \ldots, n$ 에 대해 $a=K u_{i}\left(u_{i}\right.$ 는 i 번째 원소값이 1 인 단위 뻭터, K 는 임의의 큰 정수)로 설정한다. Transformer M 의 학습이 잘 이루어졌 을 때, s 의 i 번째 원소값이 0 이라면 $b^{\prime}=M(a)=e$ 이므로 작은 값을 가 지게 되고, i 번째 원소값이 1 이라면 $b^{\prime}=M(a)=K+e$ 이므로 큰 값을 가지게 되므로, 이 연산의 모든 i 에 대한 반복 수행을 통해 s 를 복원할 수 있다.
2) Distinguisher 복원

주어진 LWE 샘플 (a, b) 와 무작위 정수로 이루어진 쌍 $\left(a_{r}, b_{r}\right)$ 에 대 해 a 의 i 번째 원소값에 임의의 정수 c 를 더한 벡터를 a^{\prime} 로 설정한다. Transformer M 의 학습이 잘 이루어졌을 때, s 의 i 번째 원소값이 0 이라 면 $M\left(a^{\prime}\right)=a^{\prime} \cdot s+e \bmod q=b$ 이므로 $M\left(a^{\prime}\right)$ 가 $M\left(a_{r}\right)$ 보다 b 에 가까운 값을 가질 확률이 높다. 모든 i 에 대해 이 방식의 반복 수행을 통 해 s 를 복원할 수 있다.

- 비밀키 검증 알고리즘

비밀키 복원 알고리즘을 통해 예측된 s^{\prime} 에 대해 주어진 LWE 샘플들로 $r=b-a \cdot s^{\prime} \bmod q$ 의 분포를 구한다. 만약 $s=s^{\prime}$ 라면 r 은 에러 e 와 같은 분포를 가지고 $s \neq s^{\prime}$ 라면 r 은 Z_{q} 상에서의 무작위 값과 같은 분포 를 가지므로 이를 통해 예측된 비밀키가 맞는지 여부를 검증할 수 있다.

III. 실험 결과 및 결론

LWE와 RLWE 문제를 공격하는 실험을 수행하여, 표 1과 같이 LWE가 RLWE에 비해서 공격에 성공하는데 필요한 샘플이 약 n 배 가까이 필요 한 것으로 나타나 딥 러닝 기반 공격에서 RLWE 기반의 암호가 LWE 기 반의 암호보다 필요한 샘플 수 측면에서 취약하다는 결론을 내렸다.

Type	n	20
LWE	44,000	105,000
RLWE	2,100	3,000

표 1. LWE/RLWE의 차원 변화에 따라 공격에 필요한 최소 샘플 수 비교
한편, 기존 논문에서는 공격자가 얻은 LWE 샘플들 중 K 개를 골라 $\{1,0,-1\}$ 중 하나의 계수를 곱한 뒤 선형 결합을 하여 새로운 학습 샘 플을 생성하는 방법을 통해 공격에 필요한 독립적으로 수집한 샘플 개수 N 을 줄이는 방법을 제시하였다. 표 2 는 $n=30$ 인 RLWE에 대해 이 방 법을 사용해 실험한 결과이다. 이 실험에서 공격에 사용된 총 학습 샘플 수는 $\binom{n \cdot N}{K} \cdot\left(3^{K}-1\right)$ 이며, 표 1 의 결과와 비교했을 때 $K=2,3,4$ 에 대해 총 학습 샘플 수는 각각 약 200 배, 162000 배, 2300 배만큼 증가하였다.

K	2	3	4
N	70	50	3
$\left.\begin{array}{c}\text { 총 학습 샘플 수 } \\ \binom{n}{K} \cdot\left(3^{K}-1\right)\end{array}\right)$	1.76×10^{7}	1.46×10^{10}	2.04×10^{8}

표 2. RLWE 문제에 대해 선형 결합 개수에 따른 공격에 필요한 독립적인 최소 RLWE 샘플 수 $(n=30)$

본 논문에서는 공격에 필요한 샘플 수를 줄이기 위해 LWE 샘플 (a, b) 의 b 에 이산균등분포 $[-r, r]$ 로부터 추출된 작은 노이즈를 더해서 새 로운 학습 샘플을 생성하는 방법을 제안한다. 표 3 은 이 방법을 사용해 실 험한 결과이며 표 1 과 표 3 의 비교를 통해 $n=20$ 의 RLWE 문제에 대해 공격에 성공하는 데 필요한 RLWE 샘플 수를 최대 약 0.286 배, $n=30$ 에 대해 최대 약 0.267 배만큼 줄이는 데 성공한 것을 확인하였다.

r	n	20
20		
3	1100	1500
4	750	1000
5	700	800
6	600	800

표 3. RLWE 차원과 노이즈의 크기 변화에 따른 공격에 필요한 독립적인 최소 RLWE 샘플 수

표 4는 새로 제시한 방법과 기존 논문의 선형결합 방법을 결합한 기법 을 실험한 결과이다. 표 2 와 표 4 의 비교를 통해 새 기법으로 공격에 필 요한 독립적인 학습 샘플 수를 최대 0.5 배 더 줄인 것을 확인하였다.

r	K	2
3		
1	40	30
2	35	25
3	60	25

표 4. RLWE 문제에 대해 선형 결합 개수와 노이즈의 크기에 따른 공격에 필요한 독립적인 최소 RLWE 샘플 수 $(n=30)$

본 논문의 실험 결과는 실제 암호에서 사용하는 LWE 문제의 차원(일 반적으로 512,1024 등)과는 많은 차이가 있다. SALSA 논문[1]에서도 이를 언급하고 있으며 이 논문의 후속 논문[3], [4]에서는 BKZ 알고리즘 을 활용하여 최대 512 차원의 LWE 문제에 대해 $4 n$ 개의 LWE 샘플만으 로 비밀키를 복원한 결과를 제시하였다. 이에 따라 BKZ 알고리즘을 사 용하여 높은 차원의 LWE에 대해서도 유사한 실험 결과를 나타내는지, 새로 제시한 방법으로 공격에 필요한 LWE 샘플 수를 $4 n$ 개에서 더 줄 일 수 있는지에 대한 연구를 진행할 예정이다.

ACKNOWLEDGMENT

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로
정보통신기획평가원의 지원을 받아 수행된 연구임.(No. 2021-0-00400002 , 저사양 디바이스 대상 고효율 PQC 안전성 및 성능 검증 기술 개발)

참 고 문 헌

[1] Wenger, E., Chen, M., Charton, F., Lauter, K., "SALSA: Attacking Lattice Cryptography with transformers," Proc. of NeurIPS, 2022.
[2] Regev, O., "On lattices, learning with errors, random linear codes, and cryptography," Journal of the ACM (JACM), Vol. 56, No. 6, pp. 1-40, 2009.
[3] Li, C., Sotáková, J., Wenger, E., Malhou, M., Garcelon, E., Charton, F., Lauter, K., "SALSA PICANTE: a machine learning attack on LWE with binary secrets," arXiv preprint arXiv:2303.04178, 2023.
[4] Li, C., Sotáková, J., Wenger, E., Allen-Zhu, Z., Charton, F., Lauter, K. et al., "SALSA VERDE: a machine learning attack on Learning With Errors with sparse small secrets," arXiv preprint arXiv: 2306.11641, 2023.

