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Abstract—This paper propose human-centric AI-driven power
grid distribution system (PGD) that dynamically allocates power
to different clusters of buildings in a multiple complex envi-
ronment using explainable cognition. The PGD system adopts
Elastic Net regularization technique and SHAP method to achieve
a cost-effective and lightweight interpretation of its prediction
process with minimal prediction error of 28082 and coefficient
of determination of -0.0032.

Index Terms—anthropomorphic, energy distribution, explain-
able AI, regression, power.

I. INTRODUCTION

The Gumi Industrial Complex, South Korea, has reportedly
suffered from inefficient power distribution due to outdated
energy monitoring systems. With the growing complexity of
modern energy grids, adaptable artificial intelligence (AI)-
driven processes are crucial for efficient distribution. An-
thropomorphism helps clarify AI decision-making, making
systems more accountable, adaptive, and reliable. Traditional
AI struggles with dispersed networks, fluctuating demands,
and renewables due to reliance on static models and histor-
ical data, creating scalability issues [1]. Although federated
learning improves decentralized processing, it faces challenges
with data disparities and coordination, which lead to biased
predictions and limited accountability [2]. This lack of trans-
parency hinders trust and justification of AI decisions in high-
accountability power systems [3].

Recent research has introduced various models to enhance
energy consumption prediction and management. The ECP-
LightGBM model, proposed by [4], combines LightGBM with
SHAP (SHapley Additive exPlanations) to address machine
learning’s ”black-box” issue, aiming for better prediction ac-
curacy, transparency, and interpretability. However, it struggles
with large-scale applications. Similarly, [5] developed a
LightGBM-SHAP model to predict energy use and GHG emis-
sions based on urban design and building features, achieving
an R² of 0.8435, but it’s less applicable to non-urban areas.
[6] introduced an LSTM model with XAI-SHAP for high-
accuracy forecasting, though it is complex to scale.

Integrating Explainable AI (xAI) into power distribution
enhances cost-effectiveness and transparency. xAI allows en-
ergy systems to optimize and clarify allocation decisions,
building trust by making logic traceable. xAI-driven models
are lightweight and cost-efficient, ideal for resource-limited
settings [6], supporting responsible management and reducing
operational costs and waste.

This paper proposes a lightweight, cost-effective Power
Grid Distribution (PGD)-AI system that dynamically manages
energy distribution across the Gumi Industrial Complexes. Our
system leverages anthropomorphic AI principles, simulating
human-like decision-making and providing clear explanations
for energy allocation. The system integrates xAI techniques
to ensure accountability in power distribution, enabling users
within these complexes to understand how decisions are made
in real-time. Through this approach, we aim to bridge the gap
between efficiency and transparency in energy management,
offering a novel solution that is both adaptive and accountable.

II. METHODOLOGY

The proposed AI-driven PGD system generates power cen-
trally and distributes it intuitively to the different devices
within the Gumi industrial complex based on pattern discovery
on data that indicate varying consumption-demand levels and
other associated feedback from the logic and inference engine,
as shown in Fig. 1. The explainable module provides humans
understandable details of what led to the prediction.

Fig. 1. Overview of the Proposed Power Grid Distribution System Design

The objective function of the PGD system is to optimize
power distribution, max(ξ), by taking cognizance of the cluster
of the consumption device, max(C) , the day of the week
(date), max(D), and the period (hour, i.e. peak and low), max(T)
that the device in each cluster is used as represented by the
matrices.
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Each row of the C-matrix represent a given cluster (say,

A) with the elements representing the devices in that cluster
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mapped to the power consumed by the specific cluster on a
specific day (d) and at a given period (t) of operation in the
complex. This can be expressed by the regression line equation
(1).

max(ξ) = βci + βdi + βti + ϵ (1)
where ci, di,and ti are independent variables representing

device name and cluster; date is used; and hour/period device
is used while β and ϵ are the coefficients of each variable and
prediction errors.

To prevent overinterpretation by the AI model, account for
nonlinear relationships between inputs, and perform adequate
feature selection (while ensuring lightweight), we adopted the
Elastic Net regularization (ENR) technique (a combination of
L1 and L2 regression) using the Grid-Search Cross Validation
algorithm as shown in equation (2) for data transformation and
prediction.
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The Gumi industrial complex energy consumption dataset
was used in this work. It has 727584 input data from 54
devices in 6 clusters with 4 features, namely device-id, date,
period, and energy consumption. Dataset was divided into 80%
training and 20% validation based on Pareto principle. Our
proposed approach was compared with other AI algorithms
using prediction efficiency and reliability metrics. Model local
and global explaination was carried out using SHAP and other
statistics. The simulation platform was Python environment
using the Jupyter Notebook on a computer running Win-
dows 10 with Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz,
6Core(s), NVIDIA GeForce GT 1030, GPU CUDA:0 (Tesla
K80, 11441.1875MB), and 36GB RAM.

III. RESULT AND DISCUSSION

Table I summarizes the prediction performance of ENR
against other AI- models for regression analysis.

TABLE I
SIMULATION AND IMPLEMENTATION PLATFORM

Model Mean Squared Error
(MSE)

R-squared (R2)

Multiple Linear (MLR) 55928.15 -0.9980

Decision Tree (DT) 5159436.55 -183.3200

Random Forest (RF) 1789019.04 -62.9129

Extreme Boosting (XGB) 55928.15 -0.9980

Elastic Net (ENR)
✓Lasso Regression (L1) 28082.88 -0.0032
✓Ridge Regression (L2) 28083.74 -0.0032

With a best alpha value of 0.0037 for Lasso regression and
10.0 best alpha for Ridge regression, the ENR exhibited a
superior power consumption prediction with a minimal error
(MSE) of 28082.88 and a low coefficient of determination
(R2) of -0.0032 better than other models. this validates that
ENR is a better approach for forecasting and predicting
nonlinear distribution of power grid in clusters.

Furthermore, the diagram in Fig. 2 explains that not all the
features of power consumption data significantly impacts on
the ENR prediction except features 1, 3, 32, 2, and 4.

Fig. 2. xAI showing Average Impact of Data Features on Model Performance

IV. CONCLUSION

This study proposed an AI-driven, responsible power grid
distribution system that efficiently meets energy demands in
diverse device clusters. Results indicate accurate, dynamic
consumption prediction when installed on a micro-grid con-
troller; future enhancements aim for increased robustness.
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